The MCC iPort™ DLL/USB to I²C Host Adapter (#MIIC-201D/U) allows any Windows 2000, XP, Vista(x86/x64), or 7(x86/x64) PC, with a free USB port or self-powered USB hub, to become an I²C Master or Slave device, transmitting or receiving I²C messages between the PC and one or more I²C devices across an I²C Bus.

This user’s guide describes the installation and operation of the iPort DLL/USB host adapter, Virtual Communication Port (VCP) driver, and the iPort Utility Pack Software for Windows.

Are you new to I²C? Want to know more? We suggest you review “What is I²C?” at www.mcc-us.com/I2CBusTechnicalOverview.pdf.

This MCC product uses NXP (Philips) components and are licensed to use the I²C Bus.

“Purchase of Philips I²C components conveys a license under the Philips’ I²C patent to use the components of the I²C system, provided the system conforms to the I²C specifications defined by Philips.”

I²C is a trademark of NXP (Philips) Corporation.
WARNING - Life Support Applications: MCC products are not designed for use in life support appliances, devices, or systems where the malfunction of the product can reasonably be expected to result in a personal injury.

WARNING - Radio Frequency Emissions: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause interference to radio communications. Operation of this equipment in a residential area is likely to cause interference, in which case the user will be required to correct the interference at his own expense.

WARNING - Electrostatic Discharge (ESD) Precautions: Any damage caused by Electrostatic Discharge (ESD) through inadequate earth grounding is NOT covered under the warranty of this product. See the “Electrostatic (ESD) Precautions” section of this guide for more information.

Printed in the United States of America
Table of Contents

Part 1 - iPort DLL/USB I²C Bus Host Adapter

1. **Overview** ... 2
 - iPort DLL/USB I²C Bus Host Adapter 2
 - iPort DLL/USB Virtual Communications Port (VCP) 2
 - iPort Utility Pack Software .. 3
 - iPort Software Development Kit for Windows 3
 - Packing Slip .. 3
 - System Requirements .. 3

2. **Interconnects** .. 3
 - USB Connector .. 4
 - Virtual Communications Port (VCP) 4
 - +5VDC Power Jack ... 4
 - I²C Interface Connector .. 5

3. **Hardware Configuration** .. 6
 - Pull-up Resistors ... 6
 - Connecting to a 3.3 Volt Target System 6
 - Connecting to an SMBus Target System 6

4. **ESD (Electrostatic Discharge) Precautions** 7
 - Host Computer Grounding .. 7
 - Grounding Solutions .. 8

5. **Driver Software Set-Up** .. 8
 - Driver Install ... 8
 - Driver Update .. 9
 - Driver Uninstall ... 9

6. **Hardware Set-Up** .. 9
 - USB Connection ... 9
 - I²C Bus Connection .. 10
 - Optional +5VDC Power Connection 10

Part 2 - iPort Utility Pack for Windows

1. **iPort Utility Pack for Windows** 13
Saved I2C Message List File .. 27
Auto Open .. 27
Auto Send .. 27
Auto Exit .. 27

5 iPort Message Manager ... 28
Message Manager Operations .. 29
Starting the Message Manager ... 29
Select the Adapter ... 29
Establish Adapter Communications Link 30
Basic Setup .. 30
Advanced Setup ... 31
 Adapter’s Own I2C Slave Address ... 31
 General Call Enable .. 31
 I2C Bus Master Bit Rate .. 31
 I2C Bus Time-Out ... 31
 Enable INT Signal Monitor .. 31
Diagnostic Setup .. 32
 Log File Level ... 32
 Log File Name ... 32
 Log File Size ... 32
Sending I2C Messages ... 33
Master Operations ... 33
Specifying the Destination Address ... 33
Repeated Start Messages ... 33
Auto Repeat ... 34
Master Transmitting Data ... 34
 Specifying Master Tx Message Bytes .. 34
 Sending Master Transmit Messages .. 35
Master Receive Data .. 35
 Specifying Data to Read .. 35
 Negative Acknowledge Last Byte .. 36
Master Transmit and Receive ... 36
Slave Operations .. 36
Slave Transmit Data ... 36
Slave Receive Data ... 36

6 Uninstalling Software Components .. 37
Uninstalling iPort Utility Pack for Windows 37
Uninstalling iPort DLL/USB VCP Device Driver 37
1 Overview

The MCC iPort DLL/USB I^2^C Bus Host Adapter (#MIIC-201D/U) allows any Windows 2000, XP, Vista, or 7 PC PC with a free USB port or self-powered USB hub, to become an I^2^C Master or Slave device, transmitting or receiving I^2^C messages between the PC and one or more I^2^C devices across an I^2^C Bus.

iPort DLL/USB Product Features:

- Compatible with existing iPort (#MIIC-201) applications. Upgrade existing iPort applications from RS-232 to USB. No software changes required.
- Windows DLL Application Program Interface (API).
- Compatible with Windows 2000, XP, Vista, or 7 based PC.
- Compatible with USB 2.0 Specifications.
- Supports I^2^C Bus Master and Slave, Transmit and Receive operations.
- User Selectable Master I^2^C bit rates of 12.5 KHz and 100 KHz.
- Compatible with 3.3V to 5V I^2^C Bus voltages.
- Includes switch-enabled internal I^2^C Pull-Up resistors.
- Includes our easy to use Virtual Communications Port (VCP) driver.

The I^2^C adapter system consists of the following components:

1.1 iPort DLL/USB I^2^C Bus Host Adapter

The iPort DLL/USB adapter is a bus-powered USB device that plugs into a host computer’s USB port or self-powered USB hub and generates I^2^C Bus signals.

1.2 iPort DLL/USB Virtual Communications Port (VCP)

The iPort DLL/USB Virtual Communications Port (VCP) driver creates a virtual serial port within the iPort DLL/USB device. To a Windows software application, the VCP looks just like a legacy serial communications port, allowing standard iPort DLL programming methods to work unchanged. No special USB programming is required. The iPort DLL/USB VCP is available to the host computer whenever the iPort DLL/USB is attached to the host computer.
1.3 iPort Utility Pack Software

This free software package includes the iPort Message Center and Message Manager applications to help you easily send and receive I²C Bus messages.

1.4 iPort Software Development Kit for Windows

This optional software package includes:

- iPort DLL (Dynamic Linked Library) for Windows
- Programmer’s Guide
- Sample Application Programs

This iPort Software Development Kit for Windows is only needed if you are developing a custom Windows software application for the iPort DLL/USB. Find additional sample programs and complete projects on our web site’s Sample Program page.

1.5 Packing Slip

This package includes the following items:

- iPort DLL/USB I²C Bus Host Adapter (#MIIC-201D/U).
- USB Interface Cable.
- I²C Clip-Lead Cable.
- I²C Interface Cable.
- iPort Utility Pack for Windows CD.
- Global Power Supply (Optional supplement power for target system).

1.6 System Requirements

a. A host computer with one free USB port or self-powered USB hub.

b. Windows 2000 (x86), XP, Vista, 7 (x86/x64).

2 Interconnects

The iPort DLL/USB includes three interconnections:
2.1 USB Connector

The USB connector provides connection from the I²C adapter to a USB port on the host computer or self-powered USB hub. The iPort DLL/USB operates as a high-power (>100 mA) bus-powered USB device, with limited target system power. Additional target system power can be provided via an included external power supply.

2.1.1 Virtual Communications Port (VCP)

The iPort DLL/USB provides a Virtual Communications Port (VCP) interface via a host computer driver. Install the iPort Utility Pack (available on CD or online) and plug the iPort DLL/USB into a USB port. Windows will automatically load the driver and instantly create a new com port (COMn) on your computer. The VCP hides the complexities of a USB physical interface. Application programs running on the host computer communicate with the iPort DLL/USB via the standard iPort DLL API.

2.2 +5VDC Power Jack

The iPort DLL/USB is a bus-powered USB device. When deriving power from the Universal Serial Bus only, a limited amount of power is available to a target system via +5V wire in the I²C Interface Connector. Additional power for a target system can be provided via the +5VDC Power Jack. When connected to the +5VDC Power Jack, an optional external power supply will remove all I²C Bus target system power load from the USB and replace it with power from the external power supply. See the “Hardware Setup” section for additional details.
2.3 I^2C Interface Connector

The I^2C adapter includes a four wire, positive locking, modular receptacle connector (see Appendix A) for interfacing to an external I^2C Bus. Lines provided include I^2C Clock (SCL), I^2C Data (SDA), Ground, and +5V.

Minimum wiring for I^2C Bus communications include I^2C Bus Clock, Data, and Ground.

Connect the +5V (V) wire to the target system to power the target system from either:

1. USB derived power. Maximum available target system power is 100 mA at +5V.
2. A +5VDC Power Jack connected external +5V regulated power supply. Maximum available target system power is 150 mA at +5V.

An I^2C Clip-Lead cable is provided to connect the I^2C adapter to a target system. Each clip-lead is clearly marked (C=SCL, V=+5VDC, D=SDA, G=Ground).

An I^2C Interface Cable (White=SCL, Red=+5VDC, Green=SDA, Black=Ground) is also provided to connect the I^2C adapter to an external I^2C Bus. Since there is no standard I^2C Bus connector, you may want to cut off one end of the cable and add a connector compatible with your target system. Additional I^2C Interface Cables, Clip-Lead Cables, and modular connectors are available from MCC (see Appendix A).
A).

3 Hardware Configuration

3.1 Pull-up Resistors

I²C Bus systems are based on open-collector technology requiring pull-up devices on each signal wire. These pull-up devices usually take the form of pull-up resistors connected to bus power.

The I²C adapter includes a slide switch used to enable or disable internal +5VDC I²C Bus 1.8K ohm pull-up resistors attached to the SCL, SDA, and /INT lines. Every I²C Bus system must have at least one pull-up on the signal lines. Use this switch to configure the pull-up resistors for your system.

3.2 Connecting to a 3.3 Volt Target System

If you are connecting the I²C adapter to a 3.3 volt target system, you should follow these steps BEFORE applying power:

• Shut off the iPort DLL/USB internal pull-ups (See Pull-up Resistor section). Use external pull-ups to the target system’s 3.3V power. These pull-ups may already be present in the target system.
• Disconnect the I²C Bus connector +5V wire from the target system. The iPort DLL/USB will be powered from the USB, and the target system will be powered by its own 3.3V power supply.

The I²C adapter is a 5-volt device. Any signal at or above 3.3V on the SCL, SDA, and /INT lines is high enough for the adapter to see a Logical 1.

3.3 Connecting to an SMBus Target System

If you are connecting the I²C adapter to a SMBus target system, you should follow these steps BEFORE applying power:

• Shut off the iPort DLL/USB internal pull-ups (See Pull-up Resistor section).
• Use external SMBus rated (approximately15k ohms) pull-up resistors. These pull-ups may already be present in the target system.
• Visit our I²C versus SMBus FAQ page (www.mcc-us.com/I2CSMBusFAQ.htm).
• See the SMBus Specification for additional details.
Special Note for SMBus Users: MCC’s I²C adapters are designed to be I²C Bus compatible, not SMBus compatible. Some features of the SMBus protocol not supported include time-outs, device reset, and Packet Error Check byte processing. The non-supported SMBus features may, or may not, permit the use of the I²C adapter in your SMBus application. Consult the MCC FAQ web page and SMBus Specification for details.

4 ESD (Electrostatic Discharge) Precautions

Electrostatic discharge is defined as the transfer of charge between bodies at different electrical potentials. Electrostatic discharge can change the electrical characteristics of a semiconductor device, degrading or destroying it. Electrostatic discharge also may upset the normal operation of an electronic system, causing equipment malfunction or failure.

When connecting the I²C adapter to a host computer and a target system, extreme care must be taken to avoid electrostatic discharge. Failure to follow ESD protection procedures when using the I²C adapter could damage the host computer, I²C adapter, or the target system, and void product warranty coverage.

4.1 Host Computer Grounding

Case 1 - Desktop and Single-board Computers. The chassis on a desktop or single-board host computer must be connected to earth ground to comply with safety regulations. If the computer chassis is NOT connected to earth ground for some reason (i.e., use of a two-prong power mains plug), the host computer power supply ground will float to some unknown voltage potential.

Case 2 - Laptop Computers. Laptop computers present special ESD problems. Most laptop computers use an external double-insulated mains power supply which is NOT connected to the mains earth ground. This means that the laptop chassis is floating at some unknown voltage potential.

In either case, upon connection to the I²C adapter and the target system, the host computer will discharge energy through its serial port to the I²C adapter, and on to the target system. This discharge could damage the host computer, I²C adapter, and the target system.
4.2 Grounding Solutions

To avoid damage to the host computer, I²C adapter, or target system, follow these instructions:

- Wear an earth grounded wrist strap, or discharge any static charge build-up, when handling the I²C adapter or any target system devices.
- Ensure that both the host computer and target system are connected to a common earth ground point.
- Make sure that all interconnections are made BEFORE applying power to the host computer, I²C adapter, and target system.
- If you are using a laptop computer or host computer that is NOT connected to mains earth ground, make a hard-wired connection from the host computer (i.e., port connector shell) and the target system ground connector to a common earth ground point.
- Avoid plugging and unplugging system components while the host computer or target system is powered.
- Ensure that any devices connected to the target system are properly grounded to the common earth ground point.
- If unsure how to properly ground system components, seek electrical expert help.

WARNING: Any damage caused by Electrostatic Discharge (ESD) through inadequate earth grounding is NOT covered under the warranty of this product.

5 Driver Software Set-Up

This section provides information on how to install, update, and uninstall the iPort DLL/USB software driver.

1. Driver Install

The iPort DLL/USB uses a Virtual Communications Port (VCP) driver that is pre-installed with the iPort Utility Pack CD (See the installation instructions in “Part 2 - iPort Utility Pack for Windows” of this User’s Guide). Pre-installation places the VCP driver into the Windows Driver Store, ready for installation when the iPort DLL/USB is first plugged into the host computer.

After iPort Utility Pack installation, the VCP driver may also be pre-installed with the Driver Install short-cut on the iPort Utility Pack Start menu.
For backup, VCP driver files can be found on the iPort Utility Pack CD, and after iPort Utility Pack software installation, in the Program Files installed iPort DLL/USB Driver folder on the host computer.

2. Driver Update

iPort DLL/USB VCP drivers are posted on the MCC website (http://www.mcc-us.com/SoftwareUpgrades-Updates.htm#iPortDLLUSB). Use Windows Device Manager (Start | Settings | Control Panel | System | Device Manager | Ports (COM & LPT)) to see the current version of the iPort DLL/USB driver installed on your computer, and determine if new driver is available. If a new VCP driver is available, follow website instructions to download and install a driver update on your computer.

3. Driver Uninstall

iPort DLL/USB VCP drivers can be uninstalled using Windows Device Manager (Start | Settings | Control Panel | System | Device Manager | Ports (COM & LPT)), or the Driver Uninstall short-cut on the iPort Utility Pack Start menu.

6. Hardware Set-Up

This section provides information on connecting the I²C adapter to your host computer and I²C Bus target system.

1. USB Connection

After completing the Driver Installation instructions above, plug the iPort DLL/USB adapter into a free USB port on your host computer or self-powered USB hub. If this is the first time the iPort/USB is connected to the host computer, Windows will automatically install the VCP driver from the Windows Driver Store and assign the iPort DLL/USB to a communications port number (COMn).

You can find the ComPort number assigned to the iPort/USB by running the iPort Utility Pack Message Center or Message Manager software, and selecting the iPort DLL/USB device. You can use Windows Device Manager (Start | Settings | Control Panel | System | Device Manager | Ports (COM &
LPT)) to find or reassign the ComPort number assigned to the iPort DLL/USB.

2. I²C Bus Connection

Connect the I²C Bus cable to the I²C adapter and your I²C device. You can make this connection with the included I²C Clip-Lead cable or I²C Interface Cable.

The I²C interconnect includes a +5V wire. You may not need to, or want to, connect the +5V wire to your target system. Refer to the “+5VDC Power Jack” and “Hardware Configuration” sections for details on pull-up resistors and connecting the optional +5V wire.

3. Optional +5VDC Power Connection

Optionally connect the external power supply to the power jack. iPort DLL/USB power is derived from the USB, with a limited amount of power available to the target system via the I²C connector. Use of the external power supply provides additional power to the target system via the I²C connector. See “+5VDC Power Jack” section for additional details.

If you have any questions on I²C adapter setup and configuration, please visit our FAQ page (http://www.mcc-us.com/faq.htm), or contact our technical support team (support@mcc-us.com).
Part 2

iPort Utility Pack
for
Windows
V5.4
1 iPort Utility Pack for Windows

The iPort Utility Pack for Windows is your express lane to I²C Bus communications. The Utility Pack includes two (2) Windows-based applications (Message Center and Message Manager) that will help you get started sending and receiving I²C Bus messages quickly and easily.

1.1 iPort Message Center

The iPort Message Center, our most popular application, operates with all versions of our I²C Bus Host Adapters. With the Message Center, you can create, save, and automatically execute scripts of I²C Bus messages. I²C Bus message activity includes:

- Master Transmit
- Master Receive
1.2 iPort Message Manager

The iPort Message Manager operates with all versions of our I²C Bus Host Adapters. Using the Message Manager, you can perform all four (4) modes of I²C Bus message activity, including:

- Master Transmit
- Master Receive
- Slave Transmit
- Slave Receive
2 System Requirements

One of the following MCC I²C Bus adapters:

1. i2cStick (#MIIC-207) USB to I²C Bus Host Adapter.
2. iPort/USB (#MIIC-204) USB to I²C Bus Host Adapter.
4. iPort/AI (#MIIC-202) RS-232 to I²C Bus Host Adapter with ASCII Interface
5. iPort (#MIIC-201) Windows to I²C Bus Host Adapter.
6. iPort DLL/USB (#MIIC-201D/U) I²C Bus Host Adapter.
7. Variable Clock Rate (#MIIC-201-V) I²C Bus Host Adapter.

Windows 2000, XP, Vista, 7, or higher.
1 free RS-232 Serial Port, or USB port for USB-based adapters.

3 iPort Utility Pack Installation

3.1 Installing from CD

1. Insert a software distribution CD into your CD drive.
2. If the install program does not start automatically, select Start | Run and type “D:SETUP.EXE.” Click OK.
3. Follow instructions on screen.

3.2 Installing from the Web

Visit MCC’s web site (www.mcc-us.com), and click on the Upgrades/Updates link.

1 Follow the instructions listed on the Upgrade/Update web page for your specific adapter.
The iPort Message Center supports I²C Master Transmit and Master Receive activities for all MCC I²C Bus host adapters. With this program you can create, save, and execute scripts of I²C Master messages.

The iPort Message Center allows a PC to become an I²C Master transmitter or receiving device, sending I²C messages between the PC and one or more I²C devices across an I²C Bus.

The iPort Message Center is designed to be a simple application for experimenting with I²C messages. It provides methods to:

1. Enter/Edit a list of I²C Master Transmit or Receive Messages.
2. Save and/or Load a list of I²C Master messages to/from disk.
3. Transmit the current list of I²C Master messages, with the option to auto-repeat upon completion, send on INT signal assertion (with INT signal supported adapters only), and beep or stop on special I²C Bus events.
4. Use command line arguments to automatically load, send, and save I²C messages from a batch file or another program.

Each I²C message can transfer up to 32 bytes of 8-bit data, with Repeated Start and Time Delay options.
4.1 Message Center Operations

Communicating with another device on the I²C Bus is easy. Just install the software as described in Section 3, then follow these simple steps:

4.1.1 Starting the Message Center

Click, Start | Programs | iPort Utility Pack | iPort Message Center

4.1.2 Selecting the Adapter

Select the I²C adapter you are using by clicking the corresponding adapter image (see Opening Screen), or the Device Select checkbox (see Main Application Screen).
4.1.3 Select the Communications Port

Use the “ComPort:” control to select the communication port connected to the I²C adapter. If an iPort/USB or iPort DLL/USB is selected, the serial number for the adapter is displayed (Win 2000, XP+ only). In addition to legacy RS-232 ports and Virtual Communication Ports, Message Center supports USB and network connected local or remote RS-232 ports via the Windows Com driver.

4.1.4 Options Menu

Use the Options menu to override default Baud Rate and I²C Bus Clock rate settings. Default settings and options are adapter dependant.

4.1.5 Establish Adapter Communications Link

Establish the communications link to the I²C adapter by clicking the Open Link button.

The Message Center sets the adapter’s own I²C Slave address to 0xFE. Once the link has opened successfully, you are an active I²C node. I²C messages entered into the message spreadsheet can be transmitted upon request. If the link open is not successful, follow the on-screen directions. Make sure the communications port is working, is enabled in the Windows Device Manager, and is not being used by other software.

4.1.6 Entering or Editing I²C Messages

I²C messages can be entered with the Message Editor, or a previously recorded message list can be loaded from the File menu.

To enter or edit a message, open the “I²C Message Editor” screen by double clicking on a message row in the spreadsheet.
Use the I²C Message Editor to:

1. Set I²C Address.

 The I²C Address is the I²C slave address of the slave device being addressed on the bus. All slave addresses are displayed as even numbers (00...FE), representing the 7 most significant bits of the 8-bit slave address transmitted on the bus (aaaa aaa0).

 The I²C adapter automatically supplies the 8th, least significant, Read/Write bit when it sends the slave address across the bus. For master write operations, the Read/Write bit is always transmitted as a logical 0 (aaaa aaa0). For master read operations, the Read/Write bit is always transmitted as a logical 1 (aaaa aaa1).

 Use the I²C Address control to set the slave address of the slave device you want to address on the bus.

2. Set Message Read/Write Direction.

 As a bus master device, the I²C adapter can write data to, or read data from, any device on the bus. Use the Msg Direction control to specify if the current message is a master write, or master read, operation. Upon making your selection, additional Write or Read parameters appear.

 I²C Bus communications support an operation called Repeated Start. In this operation, a message is sent across the bus beginning with a Start Condition, but without a Stop Condition at the end of the message. The next message sent
across the bus begins with a Start Condition, in this case a Repeated Start.

An I2C Bus master, that successfully sends a message on the bus, owns the bus until that master sends a message with a terminating Stop Condition. The Repeated Start operation allows the bus master to retain control of the bus while sending one or more messages on the bus. This prevents other bus masters, in a multi-master system, from accessing the bus and interfering with message sequences.

The Message Center supports Repeated Starts with the doStop control. Sending an I2C message with doStop enabled will cause the message to be terminated with a Stop Condition. Sending an I2C message with doStop disabled will cause the message to end without a Stop Condition, allowing the next message to be sent with a Repeated Start.

4. Set Time Delay.

Message Center supports time delays after the completion of a message. Time delays can be used to synchronize or sequence bus messages with the activity of external devices.

5. Specify Write Data or Read Byte Count.

Enter the hexadecimal data you want to write to a slave receiver device, or the number of data bytes to read from a slave transmitter. Message Center supports up to 32 bytes of 8-bit data per message.

NOTE: The data you send may have special meaning to the receiving slave device, but to the Message Center, and the I2C adapter, message data has no special meaning. Consult your slave device’s data sheet for details.

Click OK to accept the message and enter it into the spreadsheet.

Master Write messages display the message data in the spreadsheet. Master Read messages display 0xFF placeholders in the spreadsheet. Upon execution, actual data received from a slave transmitter replaces the placeholders in the message spreadsheet.

Repeat above steps for additional messages. The Message Center supports up to 32,000 messages in a list.
4.1.7 Inserting and Deleting Messages

You can insert a new message between existing messages by clicking once on a message below where you want to insert, then press the “Insert” key on your keyboard. The Message Editor also remembers the last message displayed, so double clicking on a blank spreadsheet row will allow you to copy a message. Delete a message by single clicking on the message row and pressing the “Delete” key on your keyboard.

4.1.8 Saving or Loading Message Lists

Message Center I²C message lists can be saved to, or loaded from, a disk file. To save the current message list, click File|Save on the menu bar. To open an existing message list, click File|Open List on the menu bar.

Message lists are maintained in ASCII text files (*.IML) that can be edited manually or created with a customer-developed program. See message list files for details.

4.1.9 Send the Message List

An I²C message list can be sent manually, or automatically in response to an INT signal assertion (with INT signal supported adapters only). To send the list manually, click the Send button on the main application screen. To send the list in response to an INT signal assertion (low), enable the “/INT Signal Monitoring” checkbox, and check the “Send on /INT” checkbox. The list will be sent each time the INT signal is asserted.

The Message Center also supports the repeated sending of a message list. If the Auto Repeat checkbox is checked, a message list will automatically repeat upon completion.

4.1.10 Special Event Handling

The Message Center supports the early termination of a message list, and beep on special events. See the “Stop On” and “Beep On” controls on the main application screen of available options.
4.1.11 Slave Not Acknowledging

If you get a “Slave Not Acknowledging” message in the Status window, this could indicate you have the wrong address in the I²C Destination Address, or the device is not answering to its address. Some slave devices temporarily stop acknowledging their address. Consult the slave device’s data sheet for details.
4.2 Command Line Arguments

The Message Center can be controlled via command line arguments. This feature allows the Message Center to be accessed from a batch file or another program.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPort, iPort/Al, iPort/AFM, Variable, iPort/USB, iPortDLL/USB, i2cStick</td>
<td>Specify I²C adapter type.*</td>
</tr>
<tr>
<td>COM1...COM20</td>
<td>Specify RS-232 communication port.</td>
</tr>
<tr>
<td>BAUD19200, BAUD57600, BAUD115200</td>
<td>Set RS-232 Baud Rate.*</td>
</tr>
<tr>
<td>CLOCK12.5K, CLOCK23K, CLOCK86K, CLOCK100K, CLOCK400K, VCLOCK</td>
<td>Set I²C Bus Clock Rate.*</td>
</tr>
<tr>
<td>Monitor/INT</td>
<td>Enable /INT Signal Monitor.*</td>
</tr>
<tr>
<td>StopOnBusy</td>
<td>Stop sending on I²C adapter busy.</td>
</tr>
<tr>
<td>StopOnArbLoss</td>
<td>Stop sending on I²C Bus Arbitration Loss.</td>
</tr>
<tr>
<td>StopOnNak</td>
<td>Stop on Slave Negative Acknowledgment.</td>
</tr>
<tr>
<td>BeepOnBusy</td>
<td>Beep on I²C adapter busy.</td>
</tr>
<tr>
<td>BeepOnArbLoss</td>
<td>Beep on I²C Bus arbitration loss.</td>
</tr>
<tr>
<td>BeepOnNak</td>
<td>Beep on Slave Negative Acknowledgment.</td>
</tr>
<tr>
<td>BeepOn/INT</td>
<td>Beep on /INT signal assert (low).*</td>
</tr>
<tr>
<td>AutoLoad</td>
<td>Load I²C message list file.</td>
</tr>
<tr>
<td>AutoSave</td>
<td>Save I²C message list file.</td>
</tr>
<tr>
<td>AutoOpen</td>
<td>Open link to I²C adapter.</td>
</tr>
<tr>
<td>AutoSend</td>
<td>Send I²C message list.</td>
</tr>
<tr>
<td>AutoExit</td>
<td>Exit after sending message list.</td>
</tr>
</tbody>
</table>

* Adapter specific commands. See command details below.

Command Line Syntax: imsgctr.exe AdapterType argument-list

Example: imsgctr.exe iPort/AFM adctest01.iml AutoOpen AutoSend AutoExit
4.2.1 Set Adapter Type

i2cStick i2cStick (#MIIC-207)
iPort/USB iPort/USB (#MIIC-204)
iPort/AFM iPort/AFM (#MIIC-203)
iPort/AI iPort/AI (#MIIC-202)
iPort iPort (#MIIC-201)
Variable Variable Clock (#MIIC-201-V)
iPortDLL/USB iPort DLL/USB (#MIIC-201D/U)

The Adapter Type argument should be the first argument in the argument list as it controls the availability of other arguments. If the Adapter Type is not specified, the startup adapter selection screen will be presented.

4.2.2 Set RS-232 Communication Port

1st Available ComPort (Default)
COM1...COM99

Set the RS-232 communications port attached to the I²C adapter.

4.2.3 Set RS-232 Baud Rate

BAUD19200 (Default*)
BAUD57600 (iPort/AFM, iPort/USB, i2cStick* ONLY)
BAUD115200 (iPort/AFM, iPort/USB, i2cStick* ONLY)

Set the RS-232 Baud Rate. *i2cStick internally re-maps to 115.2K baud.

4.2.4 Set I²C Bus Clock Rate

CLOCK12.5K (iPort ONLY)
CLOCK23K (iPort/AFM, iPort/USB, i2cStick ONLY)
CLOCK86K (iPort/AFM, iPort/USB, i2cStick ONLY)
CLOCK100K (iPort, iPort/AI, iPort/AFM, iPort/USB, i2cStick, Default)
CLOCK400K (iPort/AFM, iPort/USB, i2cStick ONLY)
VCLOCK=nnnHz (Variable ONLY. nnn=451...57787)

Set the I²C Bus Clock Rate to the specified value. The defaults rate for the Variable Clock adapter is 451Hz. The Variable Clock adapter does not support all rates.
within the specified range. The Message Center will adjust the specified rate to the nearest available supported rate.

4.2.5 Enable /INT Signal Monitor

Monitor/INT (on INT supported adapters only. Default=OFF)

Enable /INT signal monitoring.

4.2.6 Stop On Busy

StopOnBusy (Default=OFF)

Stop sending I²C messages if the adapter returns a "Busy" response to the host computer.

4.2.7 Stop On Arbitration Loss

StopOnArbLoss (Default=OFF)

Stop sending I²C messages if the adapter returns a "Bus Arbitration Loss" response to the host computer. Bus Arbitration Loss occurs when another I²C Bus master wins arbitration while the adapter is attempting to become a bus master.

4.2.8 Stop On Slave Negative Acknowledgment

StopOnNak (Default=OFF)

Stop sending I²C messages if the adapter returns a "Slave Not Acknowledging" response to the host computer. Slave Not Acknowledging occurs when the adapter is attempting to become a bus master and no slave device acknowledges the transmitted slave address.

4.2.9 Beep On Busy

BeepOnBusy (Default=OFF)

Generate a host computer beep if the adapter returns a "Busy" response to the host computer.
4.2.10 Beep On Arbitration Loss

BeepOnArbLoss (Default=OFF)

Generate a host computer beep if the adapter returns a "Bus Arbitration Loss" response to the host computer. Bus Arbitration Loss occurs when another I²C Bus master wins arbitration while the adapter is attempting to become a bus master.

4.2.11 Beep On Slave Negative Acknowledgment

BeepOnNak (Default=OFF)

Generate a host computer beep if the adapter returns a "Slave Not Acknowledging" response to the host computer. Slave Not Acknowledging occurs when the adapter is attempting to become a bus master and no slave device acknowledges the transmitted slave address.

4.2.12 Beep On /INT Assert

BeepOn/INT (on INT supported adapters only. Default=OFF)

Generate a host computer beep if the adapter returns an "/INT Signal Assert" response to the host computer. /INT Signal Assert occurs if /INT Signal Monitoring is enabled and a high to low transition is detected on the adapter /INT signal connector.

4.2.13 Load I²C Message List File

AutoLoad=filename
AutoLoad="file name"
filename.iml
"file name.iml"

Automatically open file with extension .IML and load messages into Message Center spreadsheet.
4.2.14 Saved I2C Message List File

AutoSave=filename
AutoSave="file name"

Automatically save message list to the specified file upon executing AutoExit. Use to save message data read from a slave transmitter device.

4.2.15 Auto Open

AutoOpen Auto Open Link to I2C Adapter

Open link to the adapter.

4.2.16 Auto Send

AutoSend Auto Send I2C Message List

Send I2C messages loaded with the AutoLoad command.

4.2.17 Auto Exit

AutoExit Auto exit after sending the message list.

Message Center will auto exit after sending the last message in the I2C message list.
5 iPort Message Manager

The iPort Message Manager supports I²C Master and Slave, Transmit and Receive activities for all MCC I²C Bus host adapters, allowing a PC to become an I²C Master or Slave device, transmitting or receiving I²C messages between the PC and one or more I²C devices across an I²C Bus.

Main Screen (Typical)

The Message Manager is designed to be a simple application for experimenting with I²C messages. Message Manager provides methods to:

1. Set the I²C adapter’s own I²C Slave address, General Call Enable, and other operating parameters.
2. Master Transmit ASCII text or Hex (00...FF) data to a specified I²C Slave Receiver device.
3. Master Receive data from a specified I²C Slave device.
4. Perform Master Read after Write operations.
5. Slave Transmit data to a requesting I²C Master device.
6. Display Master or Slave Receive data in hexadecimal or ASCII.
7. Display I²C Bus communication events.
8. Assert or release the INT signal (on supported adapters only).
5.1 Message Manager Operations

Communicating with another device on the I²C Bus is easy. Just install the software as described in Section 3, then follow these simple steps:

5.1.1 Starting the Message Manager

Click, Start | Programs | iPort Utility Pack | iPort Message Manager

5.1.2 Select the Adapter

Select the I²C adapter you are using by clicking the corresponding adapter image (see Opening Screen), or the Device Select checkbox (see Main Screen).
5.1.3 Establish Adapter Communications Link

On the main screen, click the Open button to view the Set Up Screen. Three levels of setup options are available, Basic, Advanced, and Diagnostic. Only Basic setup is required.

5.1.3.1 Basic Setup

Use the “ComPort” control to select the communication port connected to the I^2C adapter. If an iPort/USB or iPort DLL/USB is selected, the serial number for the selected adapter is displayed (Win 2000, XP+ only). In addition to legacy and Virtual RS-232 ports, Message Manager supports USB and network connected local or remote RS-232 ports via the Windows Com driver.

Select from the list of available baud rates. Then click OK.

After a few moments, the Communication Events window on the Main Application screen should report “I^2C Open Successful.”

If open is not successful, follow the on-screen instructions. Make sure the communications port is working, is enabled in the Windows Device Manager, and is not being used by other software. Additional communication port open information is available in the log file. See Diagnostic Setup options.
5.1.3.2 Advanced Setup

On the Advanced Setup screen you can set the following parameters:

Adapter’s Own I²C Slave Address

Select the I²C adapter’s own slave address. The adapter will acknowledge messages sent to this slave address. The default address is 0x6E.

General Call Enable

General Call Enable allows the I²C adapter to respond as a slave receiver to the I²C General Call Address (0x00). General Call is used by a master to broadcast an I²C message to multiple devices. The default value is enabled.

I²C Bus Master Bit Rate

Select I²C Bus speed during master operations. 100kHz is standard mode. 400kHz is fast mode. Available rates are I²C adapter dependant.

I²C Bus Time-Out

Specify how long the I²C adapter will wait before reporting an I²C Bus inter-byte time-out (0 = no time-out, 1 to 32767 milliseconds, iPort/AI fixed at 1 second).

Enable INT Signal Monitor (on supported adapters)

Enables monitoring of the INT signal state. INT state changes are reported in the main screen Communications Events window.
Diagnostic Set Up Screen

5.1.3.3 Diagnostic Setup (on supported adapters)

On the Diagnostic Set-up screen you can set the following parameters:

Log File Level

A log file is available for troubleshooting communication problems between the host computer and the I²C adapter. The log file is an ASCII text file viewable with any text editor. Select logging level. Level 1 provides minimum information. Level 4 provides maximum information.

Log File Name

Specify a log file name. Unless a path is specified, the log file will be created in the current working directory.

Log File Size

Specify log file length in lines. The log file overwrites earlier entries upon reaching the specified number on lines.
5.1.4 Sending I²C Messages

5.1.4.1 Master Operations

5.1.4.1.1 Specifying the Destination Address

The Destination Address is the I²C slave address of the slave device being addressed on the bus. All slave addresses are displayed as even numbers (00...FE), representing the 7 most significant bits of the 8-bit slave address transmitted on the bus (aaaa aaa0).

The I²C adapter automatically supplies the 8th, least significant, Read/Write bit when it sends the slave address across the bus. For master write operations, the Read/Write bit is always transmitted as a logical 0 (aaaa aaa0). For master read operations, the Read/Write bit is always transmitted as a logical 1 (aaaa aaa1).

On the main screen, use the I²C Destination Address list control to set the slave address of the slave device you want to address on the bus.

5.1.4.1.2 Repeated Start Messages

I²C Bus communications support an operation called Repeated Start. In this operation, a message is sent across the bus beginning with a Start Condition, but without a Stop Condition at the end of the message. The next message sent across the bus begins with a Start Condition, in this case a Repeated Start.

An I²C Bus master, that successfully sends a message on the bus, owns the bus until that master sends a message with a terminating Stop Condition. The Repeated Start operation allows the bus master to retain control of the bus while sending one or more messages on the bus. This prevents other bus masters, in a multi-master system, from accessing the bus and interfering with message sequences.

The Message Manager supports Repeated Starts with the doStop checkbox. Sending an I²C message with doStop checked will cause the message to be terminated with a Stop Condition. Sending an I²C message with doStop unchecked will cause the message to end without a Stop Condition, allowing the next message to be sent with a Repeated Start.
5.1.4.1.3 Auto Repeat

The situation often arises, where you would like to automatically repeat a master message operation.

The Message Manager supports auto-repeat with the Auto Repeat checkbox. You can automatically repeat a master operation by checking the Auto Repeat control before clicking the Master Tx, Master Rx, or Master TxRx buttons. The master operation repeats until the Auto Repeat control is unchecked.

5.1.4.1.4 Master Transmitting Data

Specifying Master Tx Message Bytes

Master Tx Message Bytes is the ASCII or Hexadecimal data you want to transmit to a slave receiver device. With the Message Manager, entering master transmit data is easy. On the main application screen, click on the Master Tx Message Bytes box to open the data editor.

In the data editor, enter one or more ASCII text characters or hexadecimal data bytes. Each hexadecimal byte is entered as two ASCII-Hex characters (00 to FF) preceded by a tilde (~) character. ASCII text and hex data can be intermixed, as long as each hex byte is preceded by a tilde.

For example, to enter hex data bytes 0x00, 0x01, and 0x02, enter the characters ~00~01~02 into the text box.

Each iPort Message Manager I²C message can include up to 80 bytes of 8-bit ASCII binary data.

NOTE: The data you send may have special meaning to the receiving slave device, but to the Message Manager, and the I²C adapter, message data has no special meaning. Consult your slave device’s data sheet for details.
Click OK to accept the data.

Sending Master Transmit Messages

Click the Master Tx button to write the specified Master Tx Data Bytes to the selected destination slave device. If Auto Repeat is checked, the message will automatically repeat upon completion.

The Communications Events window on the main screen should report “Master Tx Complete.” If this message does not appear, check the slave device address, connections, and power.

If you get a “Slave Not Acknowledging” message in the Communications Events window, this could mean you have the wrong address in the I²C Destination Address, or the device is not answering to its address. Consult your slave device’s data sheet for details.

5.1.4.1.5 Master Receive Data

Specifying Data to Read

On the lower part of the main screen, set the Bytes to MasterRx edit box to the number of bytes you want to read. For example: Set this to 1 to read a single byte. Click on the MasterRx button to read the data from the selected slave device.

Data received from the slave is displayed in the Received Messages text box on the main screen. The Communications Events window should report “Master Rx Transfer Complete.” If this message does not appear, check the slave device address, connections, and power.

If you get a “Slave Not Acknowledging” message in the Communications Events window, this could mean you have the wrong address in the I²C Destination Address, or the device is not answering to its address. Consult your slave device’s data sheet for details.
Negative Acknowledge Last Byte

On supported adapters, the doNak checkbox gives you the option to acknowledge, or negatively acknowledge, the last byte read from a slave device. Some Slave Transmitter Devices require a negative acknowledgment on the final byte read from the slave device. I²C adapters not supporting this option automatically negatively acknowledge the last byte read.

5.1.4.1.6 Master Transmit and Receive

The Master TxRx button sends a master write message with no Stop Condition, immediately followed by a Repeated Start master read message with Stop.

5.1.4.2 Slave Operations

In addition to performing I²C Bus master operations, the Message Manager can also perform I²C bus slave transmit and receive operations.

5.1.4.2.1 Slave Transmit Data

Slave transmit data is entered in the Slave Tx Message Bytes text box control on the main screen. Data in this text box is automatically sent to a requesting master upon receiving a slave transmit request.

Like Master Transmit data, Slave Transmit data is entered with the data editor. To enter data to be transmitted, click on the Slave Tx Message Bytes text box to open the data editor. See “Specifying Master Tx Message Bytes” section for data entry details.

5.1.4.2.2 Slave Receive Data

Data bytes received from a Master Transmitter are automatically displayed in the main application screen Received Message window. Received data is displayed in ASCII printable, or hexadecimal (~00 to ~FF) formats. Use the Hex-Display checkbox to force ASCII printable data to display in hexadecimal format.
6 Uninstalling Software Components

Software components include the iPort Utility Pack for Windows, and for USB-based adapters, the Virtual Communications Port (VCP) Device Driver. The following instructions can be used to remove either or both software components from your computer.

6.1 Uninstalling iPort Utility Pack for Windows

To uninstall the iPort Utility Pack for Windows software, use the Windows Control Panel “Programs and Features” (formerly “Add or Remove Programs”) utility. Note that uninstalling the iPort Utility Pack for Windows software does not uninstall the device or driver software.

6.2 Uninstalling iPort DLL/USB VCP Device Driver

The VCP Device Driver can be uninstalled using Windows Device Manager (Start | Settings | Control Panel | System | Device Manager | Ports (COM & LPT)), or the Driver Uninstall short-cut on the iPort Utility Pack Start menu.
iPort DLL/USB Revision Report

This section defines revisions and changes made to the iPort DLL/USB interface:

Revision: 1.00

 1 Initial Release

Additional Information

For additional information on the I²C Bus, please refer to the following:

“What is I²C?”
www.mcc-us.com/I2CBusTechnicalOverview.pdf

“Frequently Asked Questions (FAQ)”
www.mcc-us.com/faq.htm

"The I²C and How to Use It"
www.mcc-us.com/i2chowto.htm

"80C51-Based 8-Bit Microcontroller" Data Handbook.
Philips Semiconductors, Tel. (800)227-1817

"I²C Peripherals for Microcontrollers" Data Handbook.
Philips Semiconductors, Tel. (800)227-1817
Appendix A - I²C Connector Information

Interface Connector and Plug Information

MCC uses two (2) different connectors and plug assemblies. We have found these parts to be compatible.

I²C Receptacle Connectors

Molex SEMCONN ACCESS.bus Receptacle Connector

Molex Part # 15-83-0064

AMP SDL (Shielded Data Link) Connectors for ACCESS.bus

AMP Part # 4-943197-1

I²C Plug Connectors

Molex SEMCONN ACCESS.bus Plug

Molex Part # 15-83-1564

AMP SDL (Shielded Data Link) Plug for ACCESS.bus

<table>
<thead>
<tr>
<th>Component</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bush</td>
<td>520851-1</td>
</tr>
<tr>
<td>Ferrule</td>
<td>520433-1</td>
</tr>
<tr>
<td>SDL (Shell)</td>
<td>520461-1</td>
</tr>
<tr>
<td>SDL (Shell)</td>
<td>520460-1</td>
</tr>
<tr>
<td>SDL</td>
<td>4-520424-1</td>
</tr>
</tbody>
</table>

The following I²C Cables are available from MCC

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAB4</td>
<td>I²C Interface Cable, 48inches (4ft)</td>
</tr>
<tr>
<td>CAB8</td>
<td>I²C Interface Cable, 96 inches (8ft)</td>
</tr>
<tr>
<td>CABCL</td>
<td>I²C and SMBus Clip Lead Cable</td>
</tr>
</tbody>
</table>
Declaration of Conformity

This Declaration of Conformity is issued by the indicated company which is solely responsible for the declared compliance.

Product(s): iPort/USB and iPort/ DLL/USB
Product Part Number(s): MIIC-204 and MIIC-201D/U
Product Description: I2C Bus Host Adapter

Compliant Standards:

EN 55022 : 1998
Emissions Standard
Conducted Emissions (Class B)
Radiated Emissions (Class B)

EN 55024 : 1998
Immunity Standard
Immunity to Radiated Electromagnetic Fields
Immunity to Fast Transient Bursts - AC Power Lines
Immunity to Conducted Field - AC Power Lines
Immunity to Voltage Dips - AC Power Lines
Immunity to Electrostatic Discharge

Test Laboratory Information:

Cass Industries Ltd., Blackbrook Trading Estate, Weybrook Road, Manchester M19 2QD, ENGLAND.
Test Report Number: CI02780
Test Report Date: April 6th, 2006
Technical file held by: Micro Computer Control Corporation, 17 Model Avenue / PO Box 275, Hopewell, New Jersey 08525 USA, or its applicable authorized distributor or representative.

Responsible Company: Micro Computer Control Corporation, 17 Model Avenue / PO Box 275, Hopewell, New Jersey 08525 USA, or its applicable authorized distributor or representative.

Signature of Authorized Representative:

Edward Thompson

Name: Edward Thompson
Title: President, Micro Computer Control Corporation
Date: 09-JAN-07