
User’s Guide

USB to I2C Bus
Host Adapter

with iPort Utility Pack Software

www.mcc-us.com

Introduction

The MCC i2cStick™ USB to I2C Host Adapter (#MIIC-207) allows any Windows
2000, XP, Vista(x86/x64), or 7(x86/x64) PC, with a free USB port or self-powered
USB hub, to become an I2C Master or Slave device, transmitting or receiving I2C
messages between the PC and one or more I2C devices across an I2C Bus.

What’s New!
• Compact shirt-pocket size for on-the-go developers, application engineers,

field service engineers, and technicians.
• Fixed-speed communications (115.2K baud).
• Master Transmit Packet-Error Checking (PEC) detection.
• Low-cost I2C Bus connector and cabling.

This user’s guide describes the installation and operation of the i2cStick host
adapter, Virtual Communication Port (VCP) driver, the iPort Utility Pack Software
for Windows, and includes the Programmer’s Reference for creating custom
applications.

Are you new to I2C? Want to know more? We suggest you review “What is I2C?” at
www.mcc-us.com/I2CBusTechnicalOverview.pdf.

This MCC product uses NXP (Philips) components and is licensed to use the I²C
Bus.

“Purchase of Philips I²C components conveys a license under the Philips’ I²C
patent to use the components of the I²C system, provided the system conforms to
the I²C specifications defined by Philips.”

I²C is a trademark of NXP (Philips) Corporation.

03-APR-12

Copyright© 2012 by Micro Computer Control Corporation. All rights are reserved.
No part of this publication may be reproduced by any means without the prior
written permission of Micro Computer Control Corporation, PO Box 275,
Hopewell, New Jersey 08525 USA.

DISCLAIMER: Micro Computer Control Corporation makes no representations or
warranties with respect to the contents hereof and specifically disclaims any implied
warranties of merchantability or fitness for any particular purpose. Further, Micro
Computer Control Corporation reserves the right to revise the product described in
this publication and to make changes from time to time in the content hereof
without the obligation to notify any person of such revisions or changes.

WARNING - Life Support Applications: MCC products are not designed for use
in life support appliances, devices, or systems where the malfunction of the product
can reasonably be expected to result in a personal injury.

WARNING - Radio Frequency Emissions: This equipment has been tested and
found to comply with the limits for a Class A digital device, pursuant to part 15 of
the FCC rules. These limits are designed to provide reasonable protection against
interference when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and, if not
installed and used in accordance with the instruction manual, may cause
interference to radio communications. Operation of this equipment in a residential
area is likely to cause interference, in which case the user will be required to correct
the interference at his own expense.

WARNING - Electrostatic Discharge (ESD) Precautions: Any damage caused by
Electrostatic Discharge (ESD) through inadequate earth grounding is NOT covered
under the warranty of this product. See the “Electrostatic (ESD) Precautions”
section of this guide for more information.

Printed in the United States of America

Table of Contents

Part 1 - i2cStick USB to I2C Bus Host Adapter . 1

1 Overview . 2
i2cStick USB to I2C Bus Host Adapter . 2
i2cStick Virtual Communications Port (VCP) . 2
iPort Utility Pack Software . 3
i2cStick Programmer’s Reference . 3
Packing Slip . 3
System Requirements . 3

2 Interconnects . 3
USB Connector . 4

Virtual Communications Port (VCP) . 4
I2C Interface Connector . 4

3 Hardware Configuration . 6
Pull-up Resistors . 6
Connecting a 5V i2cStick to a 3.3 Volt Target System . 6
Connecting to an SMBus Target System . 6

4 ESD (Electrostatic Discharge) Precautions . 7
Host Computer Grounding . 7
Grounding Solutions . 8

5 Driver Software Set-Up . 8
Driver Install . 8
Driver Update . 9
Driver Uninstall . 9

6. Hardware Set-Up . 9
USB Connection . 9
I2C Bus Connection . 10

Part 2 - iPort Utility Pack for Windows . 11

1 iPort Utility Pack for Windows . 13
iPort Message Center . 13
iPort Message Manager . 14

2 System Requirements . 15

3 iPort Utility Pack Installation . 15
Installing from CD . 15
Installing from the Web . 15

4 iPort Message Center . 16
Message Center Operations . 17

Starting the Message Center . 17
Selecting the Adapter . 17
Select the Communications Port . 18
Options Menu . 18
Establish Adapter Communications Link . 18
Entering or Editing I2C Messages . 18
Set I2C Address . 19
Set Message Read/Write Direction . 19
Specify Repeated Start Messages . 19
Set Time Delay . 20
Specify Write Data or Read Byte Count . 20
Inserting and Deleting Messages . 21
Saving or Loading Message Lists . 21
Send the Message List . 21
Special Event Handling . 21
Slave Not Acknowledging . 22

Command Line Arguments . 23
Set Adapter Type . 24
Set RS-232 Communication Port . 24
Set RS-232 Baud Rate . 24
Set I2C Bus Clock Rate . 24
Enable /INT Signal Monitor . 25
Stop On Busy . 25
Stop On Arbitration Loss . 25
Stop On Slave Negative Acknowledgment . 25
Beep On Busy . 25
Beep On Arbitration Loss . 26
Beep On Slave Negative Acknowledgment . 26
Beep On /INT Assert . 26
Load I2C Message List File . 26
Saved I2C Message List File . 27
Auto Open . 27

Auto Send . 27
Auto Exit . 27

5 iPort Message Manager . 28
Message Manager Operations . 29

Starting the Message Manager . 29
Select the Adapter . 29
Establish Adapter Communications Link . 30
Basic Setup . 30
Advanced Setup . 31

Adapter’s Own I2C Slave Address . 31
General Call Enable . 31
I2C Bus Master Bit Rate . 31
I2C Bus Time-Out . 31
Enable INT Signal Monitor . 31

Diagnostic Setup . 32
Log File Level . 32
Log File Name . 32
Log File Size . 32

Sending I2C Messages . 33
Master Operations . 33
Specifying the Destination Address . 33
Repeated Start Messages . 33
Auto Repeat . 34
Master Transmitting Data . 34

Specifying Master Tx Message Bytes . 34
Sending Master Transmit Messages . 35

Master Receive Data . 35
Specifying Data to Read . 35
Negative Acknowledge Last Byte . 36

Master Transmit and Receive . 36
Slave Operations . 36
Slave Transmit Data . 36
Slave Receive Data . 36

6 Uninstalling Software Components . 37
Uninstalling iPort Utility Pack for Windows . 37
Uninstalling VCP Device Driver . 37

Part 3 - i2cStick Programmer’s Reference . 39

Quick Start . 40

ASCII Command Interface . 41
Synchronous Interface Events . 42

i2cStick Reset . 42
Status Display . 43
Serial Communications Baud Rate . 43
Close I2C Connection . 44
Set Destination I2C Slave Address . 44
Echo/Prompt Control . 44
Serial Communications Flow Control . 44
I2C General Call Control . 45
Hex Only Display Control . 45
Set i2cStick’s Own I2C Slave Address . 46
I2C Bus Clock Rate Control . 46
Command Menu Display . 46
Interrupt Signal Control/Status . 47
Open I2C Connection . 48
Master Read Message . 48
Slave Transmit Message . 49
Master Transmit Message . 50
Set I2C Bus Time-oUt in msec . 51
Display Firmware Version . 51
eXtended Commands . 52
Display Tx bYte Count . 54

Asynchronous Interface Events . 55
Slave Transmit Request . 55
Slave Receive Complete . 55
General Call Receive Complete . 55
i2cStick Ready . 56
Slave Not Acknowledging . 56
i2cStick Busy . 56
I2C Bus Arbitration Loss . 56
I2C Bus Error Detected . 56
I2C Bus Time-out Detected . 57
i2cStick Connection Closed . 57
Invalid Command Argument . 57
Slave Transmit Request Not Active . 57
Invalid i2cStick Command . 57
i2cStick Receive Buffer Overflow . 58

Example Code . 59
i2cStick Reset . 59
i2cStick Initialization . 59
Master Transmit Message . 59
Master Receive Message . 59
Communication Event Processing . 60

i2cStick Revision Report . 63

Additional Information . 63

Appendix A - I2C Connector Information . 64

1

Part 1 - i2cStick USB to I2C Bus Host Adapter

Part 1

USB to I2C Bus
Host Adapter

User’s Guide

Model: MIIC-207

2

1 Overview

The MCC i2cStick USB to I2C Bus Host Adapter (#MIIC-207) allows any
Windows 2000, XP, Vista, or 7 PC with a free USB port or self-powered USB hub,
to become an I2C Master or Slave device, transmitting or receiving I2C messages
between the PC and one or more I2C devices across an I2C Bus.

i2cStick Product Features:

• Add an I2C port to ANY Windows 2000, XP, Vista(x86/x64), 7(x86/x64) PC.
• Compatible with USB 2.0 Specifications.
• Works with USB Full or High-Speed systems.
• Supports I2C Bus Master and Slave, Transmit and Receive operations.
• Four I2C bit rates up to 400 KHz.
• Compatible with 3.3V to 5V I2C Bus pull-up voltages.
• Switch-enabled internal I2C Bus pull-up resistors.
• Based on a High Performance I2C Bus Co-Processor.
• Optimized for High Bus Throughput, and Low Inter-byte overhead.
• Free I2C Message Center, Message Manager, and iBurner EEPROM

Programming utility software.
• Easy to use Virtual Communications Port (VCP) driver.
• Build custom I2C Bus applications using our simple ASCII Text Commands, or

our free MS.NET Class Library.
• Compatible with iPort/AI, iPort/AFM, iPort/USB applications. No software

changes required.

The i2cStick package includes the following items:

1.1 i2cStick USB to I2C Bus Host Adapter

The i2cStick adapter is a bus-powered USB device that plugs into a host computer’s
USB port or self-powered USB hub and generates I2C Bus signals.

1.2 i2cStick Virtual Communications Port (VCP)

The i2cStick Virtual Communications Port (VCP) driver creates a virtual serial port
within the i2cStick device. To a Windows software application, the VCP looks just
like a legacy RS-232 serial communications port (COMn), allowing standard serial
communication programming methods to work unchanged. No special USB
programming is required.

3

1.3 iPort Utility Pack Software

This free software package includes the iPort Message Center and Message
Manager applications to help you easily send and receive I2C Bus messages.

1.4 i2cStick Programmer’s Reference

This section of the i2cStick User’s Guide provides a programmer’s guide to creating
custom I2C Bus applications. Find additional sample programs and complete
projects on our web site’s Sample Program page.

1.5 Packing Slip

This package includes the following items:

• i2cStick USB to I2C Bus Host Adapter (#MIIC-207).
• I2C Bus Mini Clip-Lead cable (#I2CMCL).
• i2cStick User’s Guide (this document).
• iPort Utility Pack for Windows CD.

1.6 System Requirements

a. A host computer with one free USB port or self-powered USB hub.
b. Windows XP (x86), Vista (x86/x64), 7 (x86/x64).

2 Interconnects

The i2cStick includes two interconnections:

2.1 USB Connector

The USB Type A connector provides connection from the I2C adapter to a USB port

4

on the host computer or self-powered USB hub. The i2cStick operates as a
low-power (<100 mA) bus-powered USB device.

2.1.1 Virtual Communications Port (VCP)

The i2cStick provides a Virtual Communications Port (VCP) interface via a host
computer driver. Install the iPort Utility Pack (available on CD or online) and plug
the i2cStick into a USB port. Windows will automatically load the driver and
instantly create a new com port (COMn) on your computer. The VCP hides the
complexities of a USB physical interface. Application programs running on the host
computer communicate with the i2cStick via the standard Windows
Communications Application Program Interface (API).

The i2cStick includes the following communication signals VCP interface:

• TX - Transmit Data from the Host Computer to the i2cStick.
• RX - Receive Data from the i2cStick to the Host Computer.
• RTS - Request to Send from the Host Computer to i2cStick.
• CTS - Clear to Send from the i2cStick to the Host Computer.

2.2 I2C Interface Connector

The i2cStick includes a five wire (1x5) 2.54 mm (.100"), positive locking, shrouded
header connector for interfacing to an external I2C Bus. Lines provided in this
connector include I2C Bus Clock (SCL), I2C Bus Data (SDA), Ground (GND),
Shield (SHD) (optional), and Power (+V) (optional).

Minimum wiring for I2C Bus communications include I2C Bus Clock, Data, and
Ground. Use of the Power and Shield wires in the I2C Interface connector are user
optional.

Connect the Power (+V) wire to the target system to power the target system from
USB bus power. The maximum available I2C Bus power is 50 mA at +5V (or +3.3V
with 3.3V option).

5

I2C Bus Connector

I2C Bus Pinout

An optional I2C Bus Mini Interface Cable (#I2CMIC) 1x5 2.54 mm (.100") is
available to connect the I2C adapter to an external I2C Bus.

An I2C Bus Mini Clip-Lead (#I2CMCL) cable is included to connect the I2C adapter
to a target system.

Each cable wire is color-coded or clearly marked (SCL=C=White, +V=V=Red,
SDA=D=Green, Ground=G=Black). +V and Shield (SHD) use are user optional.

6

3 Hardware Configuration

3.1 Pull-up Resistors

I2C Bus systems are based on open-collector technology requiring pull-up devices
on each signal wire. These pull-up devices usually take the form of pull-up resistors
connected to bus power.

The I2C adapter includes a side-mounted slide switch used to enable or disable
internal 5V (or 3.3V) I2C Bus 1.8K ohm pull-up resistors attached to the SCL and
SDA lines. Every I2C Bus system must have at least one pull-up on the signal lines.
Use this switch to configure the pull-up resistors for your system.

3.2 Connecting a 5V i2cStick to a 3.3 Volt Target System

If you are connecting a 5 volt I2C adapter to a 3.3 volt target system, you should
follow these steps BEFORE applying power:

• Shut off the I2C adapter’s internal pull-ups (See Pull-up Resistor section). Use
external pull-ups to the target system’s 3.3V power. These pull-ups may already
be present in the target system.

• Disconnect the I2C connector +5V wire from the target system. The I2C adapter
will be powered from its USB interface, and the target system will be powered
by its own 3.3V power supply.

The I2C adapter is a 5-volt device. Any signal above 3.3V on the SCL or SDA lines
is high enough for the adapter to see a Logical 1.

3.3 Connecting to an SMBus Target System

If you are connecting the I2C adapter to a SMBus target system, you should follow
these steps BEFORE applying power:

• Shut off the I2C adapter’s internal pull-ups (See Pull-up Resistor section).
• Use external SMBus rated (appoximately15k ohms) pull-up resistors. These

pull-ups may already be present in the target system.
• Visit our I2C versus SMBus FAQ page (www.mcc-us.com/I2CSMBusFAQ.htm).
• See the SMBus Specification for additional details.

Special Note for SMBus Users: MCC’s I2C adapters are designed to be I2C Bus

7

compatible, not SMBus compatible. Some features of the SMBus protocol not
supported include time-outs, device reset, and Packet Error Check byte processing.
The non-supported SMBus features may, or may not, permit the use of the I2C
adapter in your SMBus application. Consult the MCC FAQ web page and SMBus
Specification for details.

4 ESD (Electrostatic Discharge) Precautions

Electrostatic discharge is defined as the transfer of charge between bodies at
different electrical potentials. Electrostatic discharge can change the electrical
characteristics of a semiconductor device, degrading or destroying it. Electrostatic
discharge also may upset the normal operation of an electronic system, causing
equipment malfunction or failure.

When connecting the I2C adapter to a host computer and a target system, extreme
care must be taken to avoid electrostatic discharge. Failure to follow ESD protection
procedures when using the I2C adapter could damage the host computer, I2C
adapter, or the target system, and void product warranty coverage.

4.1 Host Computer Grounding

Case 1 - Desktop and Single-board Computers. The chassis on a desktop or
single-board host computer must be connected to earth ground to comply with
safety regulations. If the computer chassis is NOT connected to earth ground for
some reason (i.e., use of a two-prong power mains plug), the host computer power
supply ground will float to some unknown voltage potential.

Case 2 - Laptop Computers. Laptop computers present special ESD problems. Most
laptop computers use an external double-insulated mains power supply which is
NOT connected to the mains earth ground. This means that the laptop chassis is
floating at some unknown voltage potential.

In either case, upon connection to the I2C adapter and the target system, the host
computer will discharge energy through its serial port to the I2C adapter, and on to
the target system. This discharge could damage the host computer, I2C adapter, and
the target system.

8

4.2 Grounding Solutions

To avoid damage to the host computer, I2C adapter, or target system, follow these
instructions:

• Wear an earth grounded wrist strap, or discharge any static charge build-up,
when handling the I2C adapter or any target system devices.

• Ensure that both the host computer and target system are connected to a common
earth ground point.

• Make sure that all interconnections are made BEFORE applying power to the
host computer, I2C adapter, and target system.

• If you are using a laptop computer or host computer that is NOT connected to
mains earth ground, make a hard-wired connection from the host computer (i.e.,
port connector shell) and the target system ground connector to a common earth
ground point.

• Avoid plugging and unplugging system components while the host computer or
target system is powered.

• Ensure that any devices connected to the target system are properly grounded to
the common earth ground point.

• If unsure how to properly ground system components, seek electrical expert help.

WARNING: Any damage caused by Electrostatic Discharge (ESD) through
inadequate earth grounding is NOT covered under the warranty of this product.

5 Driver Software Set-Up

This section provides information on how to install, update, and uninstall the
i2cStick software driver.

1. Driver Install

The i2cStick uses a Virtual Communications Port (VCP) driver that is pre-
installed with the iPort Utility Pack CD (See the installation instructions in
“Part 2 - iPort Utility Pack for Windows” of this User’s Guide). Pre-
installation places the VCP driver into the Windows Driver Store, ready for
installation when the i2cStick is first plugged into the host computer.

After iPort Utility Pack installation, the VCP driver may also be pre-installed
with the Driver Install short-cut on the iPort Utility Pack Start menu.

9

For backup, VCP driver files can be found on the iPort Utility Pack CD, and
after iPort Utility Pack software installation, in the Program Files installed
i2cStick Driver folder on the host computer.

2. Driver Update

 i2cStick VCP drivers are posted on the MCC website
(http://www.mcc-us.com/SoftwareUpgrades-Updates.htm#i2cstick). Use
Windows Device Manager (Start | Settings | Control Panel | System | Device
Manager | Ports (COM & LPT)) to see the current version of the i2cStick
driver installed on your computer, and determine if new driver is available. If
a new VCP driver is available, follow website instructions to download and
install a driver update on your computer.

3. Driver Uninstall

 i2cStick VCP drivers can be uninstalled using Windows Device Manager
(Start | Settings | Control Panel | System | Device Manager | Ports (COM &
LPT)), or the Driver Uninstall short-cut on the iPort Utility Pack Start menu.

6. Hardware Set-Up

This section provides information on connecting the i2cStick to your host computer
and I2C Bus target system.

1. USB Connection

After completing the Driver Installation instructions above, plug the i2cStick
adapter into a free USB port on your host computer or self-powered USB hub.
If this is the first time the i2cStick is connected to the host computer,
Windows will automatically install the VCP driver from the Windows Driver
Store and assign the i2cStick to a communications port number (COMn). You
can find the ComPort number assigned to the i2cStick by running the iPort
Utility Pack Message Center or Message Manager software, and selecting the
i2cStick device.

You can use Windows Device Manager (Start | Settings | Control Panel |
System | Device Manager | Ports (COM & LPT)) to find or reassign the
ComPort number assigned to the i2cStick.

10

2. I2C Bus Connection

Connect the I2C Bus cable to the I2C adapter and your I2C device. You can
make this connection with the i2cMini Interface or i2cMini Clip-Lead cable.

The I2C interconnect includes a +5V (or 3.3V) wire. You may not need to, or
want to, connect the +V wire to your target system. Refer to the “Hardware
Configuration” section for details on pull-up resistors and connecting the
optional +V wire.

If you have any questions on I2C adapter setup and configuration, please visit our
FAQ page (http://www.mcc-us.com/faq.htm), or contact our technical support team
(support@mcc-us.com).

11

Part 2 - iPort Utility Pack for Windows

Part 2

iPort Utility Pack
for

Windows

12

13

Main Screen (Typical)

1 iPort Utility Pack for Windows

The iPort Utility Pack for Windows is your express lane to I2C Bus
communications. The Utility Pack includes two (2) Windows-based applications
(Message Center and Message Manager) that will help you get started sending and
receiving I2C Bus messages quickly and easily.

1.1 iPort Message Center

The iPort Message Center, our most popular application, operates with all versions
of our I2C Bus Host Adapters. With the Message Center, you can create, save, and
automatically execute scripts of I2C Bus messages. I2C Bus message activity
includes:

• Master Transmit
• Master Receive

14

Main Screen (Typical)

1.2 iPort Message Manager

The iPort Message Manager operates with all versions of our I2C Bus Host
Adapters. Using the Message Manager, you can perform all four (4) modes of I2C
Bus message activity, including:

• Master Transmit
• Master Receive
• Slave Transmit
• Slave Receive

15

2 System Requirements

One of the following MCC I2C Bus adapters:

1. i2cStick (#MIIC-207) USB to I2C Bus Host Adapter.
2. iPort/USB (#MIIC-204) USB to I2C Bus Host Adapter.
3. iPort/AFM (#MIIC-203) RS-232 to I2C Bus Host Adapter with ASCII Fast

Mode Interface.
4. iPort/AI (#MIIC-202) RS-232 to I2C Bus Host Adapter with ASCII Interface
5. iPort (#MIIC-201) Windows to I2C Bus Host Adapter.
6. iPort DLL/USB (#MIIC-201D/U) I2C Bus Host Adapter.
7. Variable Clock Rate (#MIIC-201-V) I2C Bus Host Adapter.

Windows 2000, XP, Vista, 7, or higher.
1 free RS-232 Serial Port, or USB port for USB-based adapters.

3 iPort Utility Pack Installation

3.1 Installing from CD

1. Insert a software distribution CD into your CD drive.
2. If the install program does not start automatically, select Start*Run and type

“D:SETUP.EXE.” Click OK.
3. Follow instructions on screen.

3.2 Installing from the Web

Visit MCC’s web site (www.mcc-us.com), and click on the Upgrades/Updates link.

1 Follow the instructions listed on the Upgrade/Update web page for your
specific adapter.

16

Main Screen (Typical)

4 iPort Message Center

The iPort Message Center supports I2C Master Transmit and Master Receive
activities for all MCC I2C Bus host adapters. With this program you can create,
save, and execute scripts of I2C Master messages.

The iPort Message Center allows a PC to become an I2C Master transmitter or
receiving device, sending I2C messages between the PC and one or more I2C
devices across an I2C Bus.

The iPort Message Center is designed to be a simple application for experimenting
with I2C messages. It provides methods to:

1. Enter/Edit a list of I2C Master Transmit or Receive Messages.
2. Save and/or Load a list of I2C Master messages to/from disk.
3. Transmit the current list of I2C Master messages, with the option to

auto-repeat upon completion, send on INT signal assertion (with INT signal
supported adapters only), and beep or stop on special I2C Bus events.

4. Use command line arguments to automatically load, send, and save I2C
messages from a batch file or another program.

Each I2C message can transfer up to 32 bytes of 8-bit data, with Repeated Start and
Time Delay options.

17

Opening Screen (Typical)

Main Screen (Typical)

4.1 Message Center Operations

Communicating with another device on the I2C Bus is easy. Just install the software
as described in Section 3, then follow these simple steps:

4.1.1 Starting the Message Center

Click, Start *Programs *iPort Utility Pack*iPort Message Center

4.1.2 Selecting the Adapter

Select the I2C adapter you are using by clicking the corresponding adapter image
(see Opening Screen), or the Device Select checkbox (see Main Application
Screen).

18

4.1.3 Select the Communications Port

Use the “ComPort:” control to select the communication port connected to the I2C
adapter. If a USB-based device is selected, the serial number for the adapter is
displayed (Win 2000, XP+ only). In addition to legacy RS-232 ports and USB-
based Virtual Communication Ports, Message Center supports USB and network
connected local or remote RS-232 ports via the Windows Com driver.

4.1.4 Options Menu

Use the Options menu to override default Baud Rate and I2C Bus Clock rate
settings. Default settings and options are adapter dependant.

4.1.5 Establish Adapter Communications Link

Establish the communications link to the I2C adapter by clicking the Open Link
button.

The Message Center sets the adapter’s own I2C Slave address to 0xFE. Once the
link has opened successfully, you are an active I2C node. I2C messages entered into
the message spreadsheet can be transmitted upon request. If the link open is not
successful, follow the on-screen directions. Make sure the communications port is
working, is enabled in the Windows Device Manager, and is not being used by
other software.

4.1.6 Entering or Editing I2C Messages

I2C messages can be entered with the Message Editor, or a previously recorded
message list can be loaded from the File menu.

To enter or edit a message, open the “I2C Message Editor” screen by double
clicking on a message row in the spreadsheet.

19

Use the I2C Message Editor to:

1. Set I2C Address.

The I2C Address is the I2C slave address of the slave device being addressed
on the bus. All slave addresses are displayed as even numbers (00...FE),
representing the 7 most significant bits of the 8-bit slave address transmitted
on the bus (aaaa aaa0).

The I2C adapter automatically supplies the 8th, least significant, Read/Write bit
when it sends the slave address across the bus. For master write operations,
the Read/Write bit is always transmitted as a logical 0 (aaaa aaa0). For master
read operations, the Read/Write bit is always transmitted as a logical 1 (aaaa
aaa1).

Use the I2C Address control to set the slave address of the slave device you
want to address on the bus.

2. Set Message Read/Write Direction.

As a bus master device, the I2C adapter can write data to, or read data from,
any device on the bus. Use the Msg Direction control to specify if the current
message is a master write, or master read, operation. Upon making your
selection, additional Write or Read parameters appear.

3. Specify Repeated Start Messages.

I2C Bus communications support an operation called Repeated Start. In this
operation, a message is sent across the bus beginning with a Start Condition,
but without a Stop Condition at the end of the message. The next message sent

20

across the bus begins with a Start Condition, in this case a Repeated Start.

An I2C Bus master, that successfully sends a message on the bus, owns the bus
until that master sends a message with a terminating Stop Condition. The
Repeated Start operation allows the bus master to retain control of the bus
while sending one or more messages on the bus. This prevents other bus
masters, in a multi-master system, from accessing the bus and interfering with
message sequences.

The Message Center supports Repeated Starts with the doStop control.
Sending an I2C message with doStop enabled will cause the message to be
terminated with a Stop Condition. Sending an I2C message with doStop
disabled will cause the message to end without a Stop Condition, allowing the
next message to be sent with a Repeated Start.

4. Set Time Delay.

Message Center supports time delays after the completion of a message. Time
delays can be used to synchronize or sequence bus messages with the activity
of external devices.

5. Specify Write Data or Read Byte Count.

Enter the hexadecimal data you want to write to a slave receiver device, or the
number of data bytes to read from a slave transmitter. Message Center
supports up to 32 bytes of 8-bit data per message.

NOTE: The data you send may have special meaning to the receiving slave
device, but to the Message Center, and the I2C adapter, message data has no
special meaning. Consult your slave device’s data sheet for details.

Click OK to accept the message and enter it into the spreadsheet.

Master Write messages display the message data in the spreadsheet. Master Read
messages display 0xFF placeholders in the spreadsheet. Upon execution, actual data
received from a slave transmitter replaces the placeholders in the message
spreadsheet.

Repeat above steps for additional messages. The Message Center supports up to
32,000 messages in a list.

21

4.1.7 Inserting and Deleting Messages

You can insert a new message between existing messages by clicking once on a
message below where you want to insert, then press the “Insert” key on your
keyboard. The Message Editor also remembers the last message displayed, so
double clicking on a blank spreadsheet row will allow you to copy a message.
Delete a message by single clicking on the message row and pressing the “Delete”
key on your keyboard.

4.1.8 Saving or Loading Message Lists

Message Center I2C message lists can be saved to, or loaded from, a disk file. To
save the current message list, click File|Save on the menu bar. To open an existing
message list, click File|Open List on the menu bar.

Message lists are maintained in ASCII text files (*.IML) that can be edited
manually or created with a customer-developed program. See message list files for
details.

4.1.9 Send the Message List

An I2C message list can be sent manually, or automatically in response to an INT
signal assertion (with INT signal supported adapters only). To send the list
manually, click the Send button on the main application screen. To send the list in
response to an INT signal assertion (low), enable the “/INT Signal Monitoring”
checkbox, and check the “Send on /INT” checkbox. The list will be sent each time
the INT signal is asserted.

The Message Center also supports the repeated sending of a message list. If the
Auto Repeat checkbox is checked, a message list will automatically repeat upon
completion.

4.1.10 Special Event Handling

The Message Center supports the early termination of a message list, and beep on
special events. See the “Stop On” and “Beep On” controls on the main application
screen of available options.

22

4.1.11 Slave Not Acknowledging

If you get a “Slave Not Acknowledging” message in the Status window, this could
indicate you have the wrong address in the I2C Destination Address, or the device is
not answering to its address. Some slave devices temporarily stop acknowledging
their address. Consult the slave device’s data sheet for details.

23

4.2 Command Line Arguments

The Message Center can be controlled via command line arguments. This feature
allows the Message Center to be accessed from a batch file or another program.

Message Center
Command Line Arguments

Command Description

iPort, iPort/AI, iPort/AFM, Variable,
iPort/USB, i2cStick

Specify I2C adapter type.*

COM1...COM99 Specify RS-232 communication port.

BAUD19200, BAUD57600, BAUD115200 Set RS-232 Baud Rate.*

CLOCK12.5K, CLOCK23K, CLOCK86K,
CLOCK100K, CLOCK400K, VCLOCK

Set I2C Bus Clock Rate.*

Monitor/INT Enable /INT Signal Monitor.*

StopOnBusy Stop sending on I2C adapter busy.

StopOnArbLoss Stop sending on I2C Bus Arbitration Loss.

StopOnNak Stop on Slave Negative Acknowledgment.

BeepOnBusy Beep on I2C adapter busy.

BeepOnArbLoss Beep on I2C Bus arbitration loss.

BeepOnNak Beep on Slave Negative Acknowledgment.

BeepOn/INT Beep on /INT signal assert (low).*

AutoLoad Load I2C message list file.

AutoSave Save I2C message list file.

AutoOpen Open link to I2C adapter.

AutoSend Send I2C message list.

AutoExit Exit after sending message list.
* Adapter specific commands. See command details below.

Command Line Syntax: imsgctr.exe AdapterType argument-list

Example: imsgctr.exe iPort/AFM adctest01.iml AutoOpen AutoSend AutoExit

24

4.2.1 Set Adapter Type

i2cStick i2cStick (#MIIC-207)
iPort/USB iPort/USB (#MIIC-204)
iPort/AFM iPort/AFM (#MIIC-203)
iPort/AI iPort/AI (#MIIC-202)
iPort iPort (#MIIC-201)
Variable Variable Clock (#MIIC-201-V)

The Adapter Type argument should be the first argument in the argument list as it
controls the availability of other arguments. If the Adapter Type is not specified, the
startup adapter selection screen will be presented.

4.2.2 Set RS-232 Communication Port

1st Available ComPort (Default)
COM1...COM99

Set the RS-232 communications port attached to the I2C adapter.

4.2.3 Set RS-232 Baud Rate

BAUD19200 (Default*)
BAUD57600 (iPort/AFM, iPort/USB, i2cStick* ONLY)
BAUD115200 (iPort/AFM, iPort/USB, i2cStick* ONLY)

Set the RS-232 Baud Rate. *i2cStick internally re-maps to 115.2K baud.

4.2.4 Set I2C Bus Clock Rate

CLOCK12.5K (iPort ONLY)
CLOCK23K (iPort/AFM, iPort/USB, i2cStick ONLY)
CLOCK86K (iPort/AFM, iPort/USB, i2cStick ONLY)
CLOCK100K (iPort, iPort/AI, iPort/AFM, iPort/USB, i2cStick, Default)
CLOCK400K (iPort/AFM, iPort/USB, i2cStick ONLY)
VCLOCK=nnnHz (Variable ONLY. nnn=451...57787)

Set the I2C Bus Clock Rate to the specified value. The defaults rate for the Variable
Clock adapter is 451Hz. The Variable Clock adapter does not support all rates
within the specified range. The Message Center will adjust the specified rate to the

25

nearest available supported rate.

4.2.5 Enable /INT Signal Monitor

Monitor/INT (on INT signal supported adapters only. Default=OFF)

Enable /INT signal monitoring.

4.2.6 Stop On Busy

StopOnBusy (Default=OFF)

Stop sending I2C messages if the adapter returns a "Busy" response to the host
computer.

4.2.7 Stop On Arbitration Loss

StopOnArbLoss (Default=OFF)

Stop sending I2C messages if the adapter returns a "Bus Arbitration Loss" response
to the host computer. Bus Arbitration Loss occurs when another I2C Bus master
wins arbitration while the adapter is attempting to become a bus master.

4.2.8 Stop On Slave Negative Acknowledgment

StopOnNak (Default=OFF)

Stop sending I2C messages if the adapter returns a "Slave Not Acknowledging"
response to the host computer. Slave Not Acknowledging occurs when the adapter
is attempting to become a bus master and no slave device acknowledges the
transmitted slave address.

4.2.9 Beep On Busy

BeepOnBusy (Default=OFF)

Generate a host computer beep if the adapter returns a "Busy" response to the host
computer.

26

4.2.10 Beep On Arbitration Loss

BeepOnArbLoss (Default=OFF)

Generate a host computer beep if the adapter returns a "Bus Arbitration Loss"
response to the host computer. Bus Arbitration Loss occurs when another I2C Bus
master wins arbitration while the adapter is attempting to become a bus master.

4.2.11 Beep On Slave Negative Acknowledgment

BeepOnNak (Default=OFF)

Generate a host computer beep if the adapter returns a "Slave Not Acknowledging"
response to the host computer. Slave Not Acknowledging occurs when the adapter
is attempting to become a bus master and no slave device acknowledges the
transmitted slave address.

4.2.12 Beep On /INT Assert

BeepOn/INT (on INT supported adapters only. Default=OFF)

Generate a host computer beep if the adapter returns an "/INT Signal Assert"
response to the host computer. /INT Signal Assert occurs if /INT Signal Monitoring
is enabled and a high to low transition is detected on the adapter /INT signal
connector.

4.2.13 Load I2C Message List File

AutoLoad=filename
AutoLoad="file name"
filename.iml
"file name.iml"

Automatically open file with extension .IML and load messages into Message
Center spreadsheet.

27

4.2.14 Saved I2C Message List File

AutoSave=filename
AutoSave="file name"

Automatically save message list to the specified file upon executing AutoExit. Use
to save message data read from a slave transmitter device.

4.2.15 Auto Open

AutoOpen Auto Open Link to I2C Adapter

Open link to the adapter.

4.2.16 Auto Send

AutoSend Auto Send I2C Message List

Send I2C messages loaded with the AutoLoad command.

4.2.17 Auto Exit

AutoExit Auto exit after sending the message list.

Message Center will auto exit after sending the last message in the I2C message list.

28

Main Screen (Typical)

5 iPort Message Manager

The iPort Message Manager supports I2C Master and Slave, Transmit and Receive
activities for all MCC I2C Bus host adapters, allowing a PC to become an I2C
Master or Slave device, transmitting or receiving I2C messages between the PC and
one or more I2C devices across an I2C Bus.

The Message Manager is designed to be a simple application for experimenting
with I2C messages. Message Manager provides methods to:

1. Set the I2C adapter’s own I2C Slave address, General Call Enable, and other
operating parameters.

2. Master Transmit ASCII text or Hex (00...FF) data to a specified I2C Slave
Receiver device.

3. Master Receive data from a specified I2C Slave device.
4. Perform Master Read after Write operations.
5. Slave Transmit data to a requesting I2C Master device.
6. Display Master or Slave Receive data in hexadecimal or ASCII.
7. Display I2C Bus communication events.
8. Assert or release the INT signal (on supported adapters only).

29

Opening Screen (Typical)

Main Screen (Typical)

5.1 Message Manager Operations

Communicating with another device on the I2C Bus is easy. Just install the software
as described in Section 3, then follow these simple steps:

5.1.1 Starting the Message Manager

Click, Start *Programs *iPort Utility Pack*iPort Message Manager

5.1.2 Select the Adapter

Select the I2C adapter you are using by clicking the corresponding adapter image
(see Opening Screen), or the Device Select checkbox (see Main Screen).

30

Basic Set Up Screen

5.1.3 Establish Adapter Communications Link

On the main screen, click the Open button to view the Set Up Screen. Three levels
of setup options are available, Basic, Advanced, and Diagnostic. Only Basic setup is
required.

5.1.3.1 Basic Setup

Use the “ComPort” control to select the communication port connected to the I2C
adapter. If a USB-based is selected, the serial number for the selected adapter is
displayed (Win 2000, XP+ only). In addition to RS-232 and USB-based adapters,
Message Manager supports USB and network connected local or remote RS-232
ports via the Windows Com driver.

Select from the list of available baud rates. Then click OK.

After a few moments, the Communication Events window on the Main Application
screen should report “I2C Open Successful.”

If open is not successful, follow the on-screen instructions. Make sure the
communications port is working, is enabled in the Windows Device Manager, and
is not being used by other software. Additional communication port open
information is available in the log file. See Diagnostic Setup options.

31

Advanced Set Up Screen

5.1.3.2 Advanced Setup

On the Advanced Setup screen you can set the following parameters:

Adapter’s Own I2C Slave Address

Select the I2C adapter’s own slave address. The adapter will acknowledge messages
sent to this slave address. The default address is 0x6E.

General Call Enable

General Call Enable allows the I2C adapter to respond as a slave receiver to the I2C
General Call Address (0x00). General Call is used by a master to broadcast an I2C
message to multiple devices. The default value is enabled.

I2C Bus Master Bit Rate

Select I2C Bus speed during master operations. 100kHz is standard mode. 400kHz
is fast mode. Available rates are I2C adapter dependant.

I2C Bus Time-Out

Specify how long the I2C adapter will wait before reporting an I2C Bus inter-byte
time-out (0 = no time-out, 1 to 32767 milliseconds, iPort/AI fixed at 1 second).

Enable INT Signal Monitor (on supported adapters)

Enables monitoring of the INT signal state. INT state changes are reported in the
main screen Communications Events window.

32

Diagnostic Set Up Screen

5.1.3.3 Diagnostic Setup (on supported adapters)

On the Diagnostic Set-up screen you can set the following parameters:

Log File Level

A log file is available for troubleshooting communication problems between the
host computer and the I2C adapter. The log file is an ASCII text file viewable with
any text editor. Select logging level. Level 1 provides minimum information. Level
4 provides maximum information.

Log File Name

Specify a log file name. Unless a path is specified, the log file will be created in the
current working directory.

Log File Size

Specify log file length in lines. The log file overwrites earlier entries upon reaching
the specified number on lines.

33

5.1.4 Sending I2C Messages

5.1.4.1 Master Operations

5.1.4.1.1 Specifying the Destination Address

The Destination Address is the I2C slave address of the slave device being
addressed on the bus. All slave addresses are displayed as even numbers (00...FE),
representing the 7 most significant bits of the 8-bit slave address transmitted on the
bus (aaaa aaa0).

The I2C adapter automatically supplies the 8th, least significant, Read/Write bit
when it sends the slave address across the bus. For master write operations, the
Read/Write bit is always transmitted as a logical 0 (aaaa aaa0). For master read
operations, the Read/Write bit is always transmitted as a logical 1 (aaaa aaa1).

On the main screen, use the I2C Destination Address list control to set the slave
address of the slave device you want to address on the bus.

5.1.4.1.2 Repeated Start Messages

I2C Bus communications support an operation called Repeated Start. In this
operation, a message is sent across the bus beginning with a Start Condition, but
without a Stop Condition at the end of the message. The next message sent across
the bus begins with a Start Condition, in this case a Repeated Start.

An I2C Bus master, that successfully sends a message on the bus, owns the bus until
that master sends a message with a terminating Stop Condition. The Repeated Start
operation allows the bus master to retain control of the bus while sending one or
more messages on the bus. This prevents other bus masters, in a multi-master
system, from accessing the bus and interfering with message sequences.

The Message Manager supports Repeated Starts with the doStop checkbox. Sending
an I2C message with doStop checked will cause the message to be terminated with a
Stop Condition. Sending an I2C message with doStop unchecked will cause the
message to end without a Stop Condition, allowing the next message to be sent with
a Repeated Start.

34

5.1.4.1.3 Auto Repeat

The situation often arises, where you would like to automatically repeat a master
message operation.

The Message Manager supports auto-repeat with the Auto Repeat checkbox. You
can automatically repeat a master operation by checking the Auto Repeat control
before clicking the Master Tx, Master Rx, or Master TxRx buttons. The master
operation repeats until the Auto Repeat control is unchecked.

5.1.4.1.4 Master Transmitting Data

Specifying Master Tx Message Bytes

Master Tx Message Bytes is the ASCII or Hexadecimal data you want to transmit to
a slave receiver device. With the Message Manager, entering master transmit data is
easy. On the main application screen, click on the Master Tx Message Bytes box to
open the data editor.

In the data editor, enter one or more ASCII text characters or hexadecimal data
bytes. Each hexadecimal byte is entered as two ASCII-Hex characters (00 to FF)
preceded by a tilde (~) character. ASCII text and hex data can be intermixed, as
long as each hex byte is preceded by a tilde.

For example, to enter hex data bytes 0x00, 0x01, and 0x02, enter the characters
~00~01~02 into the text box.

Each iPort Message Manager I2C message can include up to 80 bytes of 8-bit ASCII
binary data.

NOTE: The data you send may have special meaning to the receiving slave device,
but to the Message Manager, and the I2C adapter, message data has no special
meaning. Consult your slave device’s data sheet for details.

35

Click OK to accept the data.

Sending Master Transmit Messages

Click the Master Tx button to write the specified Master Tx Data Bytes to the
selected destination slave device. If Auto Repeat is checked, the message will
automatically repeat upon completion.

The Communications Events window on the main screen should report “Master Tx
Complete.” If this message does not appear, check the slave device address,
connections, and power.

If you get a “Slave Not Acknowledging” message in the Communications Events
window, this could mean you have the wrong address in the I2C Destination
Address, or the device is not answering to its address. Consult your slave device’s
data sheet for details.

5.1.4.1.5 Master Receive Data

Specifying Data to Read

On the lower part of the main screen, set the Bytes to MasterRx edit box to the
number of bytes you want to read. For example: Set this to 1 to read a single byte.
Click on the MasterRx button to read the data from the selected slave device.

Data received from the slave is displayed in the Received Messages text box on the
main screen. The Communications Events window should report “Master Rx
Transfer Complete.” If this message does not appear, check the slave device
address, connections, and power.

If you get a “Slave Not Acknowledging” message in the Communications Events
window, this could mean you have the wrong address in the I2C Destination
Address, or the device is not answering to its address. Consult your slave device’s
data sheet for details.

36

Negative Acknowledge Last Byte

On supported adapters, the doNak checkbox gives you the option to acknowledge,
or negatively acknowledge, the last byte read from a slave device. Some Slave
Transmitter Devices require a negative acknowledgment on the final byte read from
the slave device. I2C adapters not supporting this option automatically negatively
acknowledge the last byte read.

5.1.4.1.6 Master Transmit and Receive

The Master TxRx button sends a master write message with no Stop Condition,
immediately followed by a Repeated Start master read message with Stop.

5.1.4.2 Slave Operations

In addition to performing I2C Bus master operations, the Message Manager can also
perform I2C bus slave transmit and receive operations.

5.1.4.2.1 Slave Transmit Data

Slave transmit data is entered in the Slave Tx Message Bytes text box control on the
main screen. Data in this text box is automatically sent to a requesting master upon
receiving a slave transmit request.

Like Master Transmit data, Slave Transmit data is entered with the data editor. To
enter data to be transmitted, click on the Slave Tx Message Bytes text box to open
the data editor. See “Specifying Master Tx Message Bytes” section for data entry
details.

5.1.4.2.2 Slave Receive Data

Data bytes received from a Master Transmitter are automatically displayed in the
main application screen Received Message window. Received data is displayed in
ASCII printable, or hexadecimal (~00 to ~FF) formats. Use the Hex-Display
checkbox to force ASCII printable data to display in hexadecimal format .

37

6 Uninstalling Software Components

Software components include the iPort Utility Pack for Windows, and for USB-
based adapters, the Virtual Communications Port (VCP) Device Driver. The
following instructions can be used to remove either or both software components
from your computer.

6.1 Uninstalling iPort Utility Pack for Windows

To uninstall the iPort Utility Pack for Windows software, use the Windows Control
Panel “Programs and Features” (formerly “Add or Remove Programs”) utility. Note
that uninstalling the iPort Utility Pack for Windows software does not uninstall the
device or driver software.

6.2 Uninstalling VCP Device Driver

The VCP Device Driver can be uninstalled using Windows Device Manager (Start |
Settings | Control Panel | System | Device Manager | Ports (COM & LPT)), or the
Driver Uninstall short-cut on the iPort Utility Pack Start menu.

38

39

Part 3 - i2cStick Programmer’s Reference

Part 3

Programmer’s Reference

ASCII Command Interface
Definitions

40

Programmer’s
Quick Start

Creating a custom i2cStick program is easier if you know what to expect. Follow
these steps to manually control the i2cStick from your computer’s keyboard and
screen.

1 Install the i2cStick as directed in the “Hardware Set-Up” section of this User’s
Guide.

2 Use a terminal emulator program, like Windows’ Hyperterminal, to start
communicating with the I2C adapter. Remember to select the correct Com Port
(COM1, COM2,…) and set the communication parameters to 19200, 57600, or
115200 Baud*, 8 Data Bits, No Parity, and 1 Stop Bit. (*i2cStick internally re-maps
all three baud rates to 115200 baud)

3 Enter //[CR] to get an i2cStick Status Report. Note: All i2cStick commands are
terminated with a Carriage Return ([CR]) character. On most terminal emulators,
press the Enter key.

4 Enter /F0[CR] (XON/XOFF) or /F1[CR] (RTS/CTS) to set i2cStick’s
communications Flow Control to match your terminal.

5 Enter /Ixx[CR] (xx = 02…FE even) to set i2cStick’s Own I2C Slave Address.

6 Enter /O[CR] to Open the i2cStick Connection. The i2cStick does not need to
be connected to an I2C Bus to open a connection.

7 Enter /Dxx[CR] (xx = 00…FE even) to select a Destination I2C Slave Address

8 Enter /Ttext[CR] (text = ASCII or Hex-Equivalent ~00…~FF) to Master
Transmit a message to the current Destination I2C Slave device

9 Enter /Rn[CR] (n = 0…32767) to Master Read a message from the current
Destination I2C Slave device.

41

i2cStick
ASCII Command Interface

Note: [CR] = Carriage Return Code or Enter Key.
Syntax: [Select], (Optional), xx = [00..FE], n = [0..32767]

Command Description

Ctrl/R,Ctrl/R,Ctrl/R i2cStick Reset
This command resets the i2cStick to its default state.

 //[CR] Status Display
Display i2cstick status information.

/B[0|1|2][CR] Serial Communication Baud Rate Control
Set the serial communication baud rate (0 = 19.2K, 1 = 57.6K, 2 = 115.2K
Baud). Note: For backward compatibility only. i2cStick internally re-maps all
three baud rates to 115.2K.

 /C[CR] Close I2C Connection
Disconnect from the I2C Bus.

 /Dxx[CR] Set Destination I2C Slave Address
Set the destination I2C Slave Address for subsequent Master Transmit or
Receive operations.

/E[0|1][CR] Echo/Prompt Control [0 = Off, 1 = On]
Enable/Disable data entry echo and prompts.

/F[0|1][CR] Flow Control [0 = XON/XOFF, 1 = RTS/CTS]
Select serial communication handshaking protocol.

/G[0|1][CR] I2C General Call Control [0 = Disabled, 1 = Enabled]
Enables/Disables i2cStick response to I2C Bus General Call (00) messages.

/H[0|1][CR] Hex Only Display Control [0 = Disabled, 1 = Enabled]
Controls display format of received message data.

 /Ixx[CR] Set i2cStick’s Own I2C Slave Address
Sets i2cStick's own I2C Slave Address. i2cStick will respond to I2C Bus
messages sent to this address.

/K[0|1|2|3][CR] I2C Bus Clock Rate Control
Set I2C Bus Clock Rate Control (0=23, 1=86, 2=100, 3=400 KHz)

 /M[CR] Command Menu Display
Displays i2cStick’s Command Menu

/N([0|1|A|R])[CR] iNterrupt Signal Monitor/Control/Status
Sets Monitor/Control/Status of INT line [0 = Disable, 1 = Enable, A = Assert, R
= Release, CR=Status]. For backward compatibility only. INT signal not
supported.

 /O[CR] Open I2C Connection
Activates i2cStick as an I2C device attached to the bus.

42

 /(*)Rnnnn[CR] Master Read Message
Read the specified number of data bytes from the current Destination I2C Slave
device. * = No Stop for Repeated Start.

 /Stext[CR] Slave Transmit Message
Write the specified data bytes to a requesting I2C Master Receiver device.

 /(*)Ttext[CR] Master Transmit Message
Master Transmit the specified data bytes to the current Destination I2C Slave
device. * = No Stop for Repeated Start.

/Un[CR] I2C Bus Time-oUt
Set I2C Bus Time-oUt in msec (0=Disable)

/V[CR] Display i2cStick Firmware Version
(Major XX.XX Minor)

/X[CR] eXtended Commands
(See Prompt or User’s Guide)

/(*)Y[CR] Display Tx bYte Count
Display number of data bytes last sent to slave device. * = Also display last
received Acknowledgment bit from slave device.

Synchronous Interface Events

Synchronous Events are those i2cStick interface activities initiated by the Host
computer.

i2cStick Reset

Reset i2cStick to its default state.

The reset command consists of three (3) sequential Ctrl/R characters. Ctrl/R is the
character code Decimal 18 and Hexadecimal 0x12. When using a terminal emulator
program, you can generate a Ctrl/R by holding down the Ctrl key and pressing the R
key.

Note: It is recommended that the Host computer turn off all serial port flow control
before sending this command to override any flow control from the I2C adapter that
could block the transmission. Flow control should be enabled once the response is
received.

Command: Ctrl/R,Ctrl/R,Ctrl/R ‘i2cStick Reset
Response. * ‘i2cStick Ready

43

Default Setting: None

Status Display

Display i2cStick status.

Command: //[CR] 'Status Display
Response (Typical):

i2cStick I2C Host Adapter Vxx.xx
Copyright © xxxx, Micro Computer Control Corp.
Visit our Web Site at: http://www.mcc-us.com

Serial Communications Baud Rate (115.2kHz)
Destination I2C Slave Address (xxH)
Echo/Prompt (Disabled)
Flow Control (XON/XOFF)
Hex Only Display (Enabled)
I2C Connection (Closed)
General Call (Enabled)
iPort’s own Slave Address (xxH)
I2C Bus Clock Rate (100kHz)
iNterrupt Signal (Released)
I2C Bus Time-oUt (10000 msec)

Serial Communications Baud Rate
This command sets the serial communications baud rate.
(0=19.2k, 1=57.6k, 2= 115.2k)

Command: /B[0|1|2][CR] 'Set Serial Com Baud Rate
Response 1: /BC0[CR] 'Baud Change Complete
Response 2: /BC1[CR] 'Baud Change Complete
Response 3: /BC2[CR] 'Baud Change Complete
Response 3: /I89[CR] 'Invalid Command Argument

Default Setting: /B0[CR]

NOTE: The Serial Communications Baud Rate command is supported for backward
compatibility only. i2cStick internally re-maps all three baud rates to 115.2K baud.

Close I2C Connection

44

Disconnect i2cStick from the I2C Bus.

Command: /C[CR] 'Close I2C Connection
Response: /CCC[CR] 'Close Connection Complete
Default Setting: 'Closed

Set Destination I2C Slave Address

Set the destination I2C Slave Address (Hex 0,2...FE) for all subsequent Master
Transmit or Receive operations.

Command: /Dxx[CR] 'Set Destination I2C Slave Address
Response 1: * 'i2cStick Ready
Response 2: /I89[CR] 'Invalid Command Argument
Default Setting: 00

Echo/Prompt Control

This command enables or disables data entry echo and prompts used as feedback to
manual operations from a computer terminal.

Command: /E[0|1][CR] 'Echo/Prompt Control [0 = Off, 1 = On]
Response: * 'i2cStick Ready
Default Setting: Off

Serial Communications Flow Control

Select the serial communication handshaking protocol to be used in communicating
with the Host computer.

i2cStick implements either XON/XOFF (by default) or RTS/CTS flow control
protocols. Flow control is used by the i2cStick to limit character flow to and from
the Host computer to avoid overflowing internal communication buffers and lost
data.

The XON/XOFF protocol inserts characters directly into the ASCII data stream.
XON (Hexadecimal 0x11) is used to enable the flow of data. XOFF (Hexadecimal
0x13) is used to stop the flow of data.

The RTS/CTS protocol uses two additional wires in the cable connecting

45

communicating devices. The RTS wire is an output signal. It indicates that the
device generating the signal has buffer space available, and can receive data. The
CTS wire is an input signal. It indicates that the other device has buffer space
available, and can receive more data.

In general, XON/XOFF requires a minimal three-wire connection, Ground,
Transmit Data, and Receive Data. This protocol does insert control characters into
the stream of data, and may not be appropriate for all Host systems. If supported,
these control characters are normally automatically stripped out of the data stream
by Host communication driver software, and are not visible at the application
program level.

The RTS/CTS protocol requires a serial port, cabling, and Host communication
driver software that supports the additional control signals.

Command: /F[0|1][CR] Flow Control [0 = XON/XOFF, 1 = RTS/CTS]
Response: * 'i2cStick Ready
Default Setting: XON/XOFF

I2C General Call Control

Enables or disables i2cStick response to I2C Bus General Call (Address x00)
messages.

Command: /G[0|1][CR] 'I2C General Call [0 = Disabled, 1 = Enabled]
Response: * 'i2cStick Ready
Default Setting: Enabled

Hex Only Display Control

Controls Hex Only (~00...~FF) output of Master or Slave received data.

When enabled, all received I2C message data bytes are displayed in Hex
(~00…~FF) format. When disabled, received I2C message data bytes representing
ASCII printable characters (x20...x7F) are displayed as their ASCII printable
character. Non-ASCII printable data bytes are always displayed in Hex (~00…~FF)
form.

Command: /H[0|1][CR] 'Hex Only Display [0 = Disabled, 1 = Enabled]
Response: * 'i2cStick Ready

46

Default Setting: Enabled

Set i2cStick’s Own I2C Slave Address

Sets i2cStick's own I2C Slave Address (Hex 2...FE). Subsequent I2C messages to
this address will cause i2cStick to become an active Slave device on the bus.

Command: /Ixx[CR] 'Set i2cStick's Own I2C Slave Address
Response 1: * 'i2cStick Ready
Response 2: /I89[CR] 'Invalid Command Argument
Default Setting: 6E

I2C Bus Clock Rate Control

Set the I2C Bus master clock rate. (0=23, 1=86, 2=100, 3=400 KHz)

Command: /K[0|1|2|3][CR] 'Set i2cStick's Clock Rate
Response 1: * 'i2cStick Ready
Default Setting: /K2[CR]

The i2cStick I2C Bus master clock rate is controlled by the frequency of the
oscillator used in the adapter. The oscillator frequency has been selected to give
accurate RS-232 baud rates, as the RS-232 baud rate must exactly match the rate
used by the host computer. Actual master I2C clock rates are close to, but not faster
than, the stated rates. Slave I2C clock rates are driven by the external master device,
with possible clock-stretching as required to store or retrieve message data.

Command Menu Display

Display i2cStick’s command menu.

Command: /M[CR] 'Command Menu Display
Response (Typical):
i2cStick Command Menu Syntax: [Select], (Optional), xx=[00..FE], n=[1..32767]

// Status Display
/B[0|1|2] RS-232 Baud Rate Control (0=19.2, 1=57.6, 2=115.2KHz)
/C Close I2C Connection
/Dxx Set Destination I2C Slave Address
/E[0|1] Echo/Prompt Control (0=Disable, 1=Enable)

47

/F[0|1] Flow Control (0=XON/XOFF, 1=RTS/CTS)
/G[0|1] General Call Control (0=Disable, 1=Enable)
/H[0|1] Hex Only Display Control (0=Disable, 1=Enable)
/Ixx Set i2cStick’s Own I2C Slave Address
/K[0|1|2|3] I2C Bus Clock Rate Control (0=23, 1=86, 2=100, 3=400 KHz)
/M Menu Display
/N([0|1|A|R]) iNterrupt Signal Monitor/Control/Status

(0=Disable, 1=Enable / A=Assert, R=Release / <CR>=Status)
/O Open I2C Connection
/(*)Rn Master Rx Message *=No Stop
/S(text) Slave Tx Message
/(*)T(text) Master Tx Message *=No Stop
/Un Set I2C Bus Time-oUt in msec 0=Disable)
/V Display Firmware Version (Major XX.XX Minor)
/X[...]... Extended Cmds (See Prompt or User's Guide)
/(*)Y Display Tx bYte Count *= with last received Ack bit

Interrupt Signal Control/Status

The i2cStick does not support the INT signal. The following commands and
responses are provided for backward compatibility only.

Control
Command: /N0[CR] Disable Monitor

/N1[CR] Enable Monitor
/NA[CR] Assert INT Signal
/NR[CR] Release INT Signal

Status
Command: /N[CR] Status
Response: /NSA INT Asserted

/NSR INT Released

Response: * 'i2cStick Ready
Default Setting: /N0, /NR

Open I2C Connection

Activates i2cStick as an active device on the I2C Bus.

Command: /O[CR] 'Open I2C Connection

48

Response: /OCC[CR] 'Open Connection Complete
Default Setting: Closed

Master Read Message

This command causes i2cStick to read the specified number of data bytes from the
currently selected Destination I2C Slave Address with or without generating an I2C
Stop condition after the last byte is received.

Enter Byte Count (Decimal 0...32767) then Press Enter, or ESCape to Cancel. A
Byte Count of Zero (0) represents a Variable Length message, where the first byte
read from the I2C Slave device indicates the number of additional trailing bytes that
are available to read. The i2cStick automatically reads the first byte, then the
additional bytes as specified by the first byte. All message bytes including the
Length byte are returned to the Host computer.

The received text is a representation of the data bytes within the Master Receive
message. The format of this data is controlled by the current setting of the Hex Only
Display Control.

If the slave device acknowledges its I2C Slave Address, the specified number of
bytes are read. The i2cStick acknowledges all bytes read except the last. If not
disabled, the message is then terminated with an I2C Stop condition.

Sending Master Receive messages with No Stop allows the Master to retain
exclusive control of the I2C Bus until it finally sends a Stop. During this time, the
Master can send additional (Repeated Start) Master Transmit or Master Receive
messages to the same or other I2C Slave devices.

Command: /(*)Rnnnn[CR] 'Master Read Message (* = No Stop)

Response 1: /MRCtext[CR] 'Master Read Complete
Response 2: /SNA[CR] 'Slave Not Acknowledging
Response 3: /I81[CR] 'i2cStick is Busy, Command Ignored
Response 4: /I83[CR] ' I2C Arbitration Loss Detected
Response 5: /I88[CR] 'Connection Not Open
Response 6: /I89[CR] 'Invalid Command Argument
Default Setting: None

Slave Transmit Message

49

This command should be issued to i2cStick in response to a Slave Transmit Request
(/STR). This command causes i2cStick to write the specified data bytes to the
requesting I2C Master Receiver device.

Enter Message Bytes (1 or more Printable ASCII or Hex-equivalent ~00..~FF), then
Press Enter, or ESCape to Cancel.

Note 1: Upon receiving a Slave Transmit request from a Master Receiver device on
the I2C Bus, the i2cStick outputs a Slave Transmit Request to its Host device, and
initiates an I2C Clock Stretch (SCL Low) until a Slave Transmit command is
received from the Host computer. While clock stretching, no other messages can be
transmitted on the I2C Bus.

Note 2: The tilde (~) character and the Carriage Return (CR) characters are used as
special marker characters within all i2cStick transmitted text messages. These
characters may not be used within the text of a message, but must be replaced by
the following "Hex equivalent" characters:

Tilde replaced by "~7E"
Carriage Return replaced by "~0D"

i2cStick automatically translates "Hex equivalent" characters to their single-byte
value for transmission across the I2C Bus.

All entered data bytes are transmitted to the requesting Master Receiver device.
Slave Transmit stops upon receiving the first negative acknowledgment (Nack)
from the Master Receiver.

Command: /Stext[CR] 'Slave Transmit Message
Response 1: /STC[CR] 'Slave Transmit Complete
Response 2: /I88[CR] 'Connection Not Open
Response 3: /I8A[CR] ‘Slave Transmit Request Not Active, Cmd Ignored
Default Setting: None

50

Examples:

/Sabcd1234[CR] ‘ASCII Printable characters "abcd1234"
/S~00~01~02[CR] ‘Binary data bytes 00, 01,02
/Sab~7Ecd[CR] ‘Tilde embedded in ASCII Printable characters
/S12~0D24[CR] ‘Carriage Return embedded in ASCII Printable

characters

Master Transmit Message

Write the specified data bytes to the currently selected Destination I2C Slave
Address with or without generating an I2C Stop condition after the last byte is
transmitted.

Enter Message Bytes (0 or more Printable ASCII or Hex-equivalent ~00..~FF), then
Press Enter, ESCape to Cancel.

Note: The tilde (~) character and the Carriage Return (CR) characters are used as
special marker characters within all i2cStick transmitted text messages. These
characters may not be used within the text of a message, but must be replaced by
the following "Hex-equivalent" characters:

Tilde replaced by "~7E"
Carriage Return replaced by "~0D"

i2cStick automatically translates "Hex equivalent" characters to their single-byte
value for transmission across the I2C Bus.

All entered data bytes are transmitted to the Destination I2C Slave Receiver device.
Master Transmit stops upon receiving the first negative acknowledgment (Nack)
from the Slave Receiver. If not disabled, the message is then terminated with an I2C
Stop condition.

Sending Master Transmit messages with No Stop allows the Master to retain
exclusive control of the I2C Bus until it finally sends a Stop. During this time, the
Master can send additional (Repeated Start) Master Transmit or Master Receive
messages to the same or other I2C Slave devices.

Note: See the Display Tx bYte Count command (/Y) for additional information on
the last completed Master Transmit message.

51

Command: /(*)Ttext[CR] 'Master Transmit Message (* = No Stop)
Response 1: /MTC[CR] 'Master Transmit Complete
Response 2: /SNA[CR] 'Slave Not Acknowledging
Response 3: /I81[CR] 'i2cStick is Busy, Command Ignored
Response 4: /I83[CR] ' I2C Arbitration Loss Detected
Response 5: /I88[CR] 'Connection Not Open
Default Setting: None

Examples:

/Tabcd1234[CR] ‘ASCII Printable characters "abcd1234"
/T~00~01~02[CR] ‘Binary data bytes 00, 01,02
/*T~00~01~02[CR] ‘Binary data bytes 00, 01,02 with No Stop
/Tab~7Ecd[CR] ‘Tilde embedded in ASCII Printable characters
/T12~0D24[CR] ‘Carriage Return embedded in ASCII Printable

characters

Set I2C Bus Time-oUt in msec

Set bus time-out in milliseconds.

The i2cStick reports a bus time-out if no inter-byte bus activity for the specified
time occurs within an I2C Bus message.

Command: /Unnnnn[CR] 'I2C Bus time-oUt (nnnn = 0 (disable)...32000 msec)
Response: * 'i2cStick Ready
Default Setting: 10000 msec (10 seconds)

Display Firmware Version

Display i2cStick firmware version

Command: /V[CR] 'Firmware Version
Response: /VCCXX.XX[CR] '(Major XX.XX Minor)

eXtended Commands

The eXtended commands are used to generate "out-of-spec" signaling. eXtended
commands cannot use the adapter’s I2C hardware to control the SCL and SDA lines,
as the I2C hardware only generates I2C compatible signals. The eXtended

52

commands use firmware to "bit-bang" the SCL and SDA lines. This firmware
cannot operate as fast as the hardware, and it can be interrupted at any time by
adapter internal interrupts. The eXtended commands run directly off the command
characters as they are received on the serial link. Speed of execution of eXtended
commands is controlled by the serial link communication rate, the execution speed
of the firmware, delays caused by execution interruptions that may occur while a
command is executing, and I2C Bus clock-stretching by external slave devices.

The following commands manipulate the I2C Clock (SCL) and data (SDA) lines.

Command: /X[S|~xx|R|r|P|0|1|?|D|d|C|c|L|A| |"]..., then Press Enter or ESCape
 Enter /X followed by zero or more sub-commands, the [CR]

Response: /XCC(see commands below)[CR]

High Level Sub-Commands:

S = Send Start
~xx = Send Byte (xx = 00...FF)(response = A or N)
R = Read Byte with Ack (response = ~xx)
r = Read Byte with Nak (response = ~xx)
P = Send Stop

Mid Level Sub-Commands:

0 = Send 0 Bit
1 = Send 1 Bit
? = Read Bit (response = 0 or 1)

Low Level Sub-Commands:

D = Set SDA High
d = Set SDA Low
C = Set SCL High
c = Set SCL Low
L = Read SCL (response = 0 or 1)
A = Read SDA (response = 0 or 1)

53

Miscellaneous Sub-Commands:

space = no action
"comment" = no action

Examples:

Master transmit three bytes to slave address 0x4e using high level, mid level, and
low level sub-commands.

High Level Command:/X S ~4e ~01 ~02 ~03 P [CR]
High Level Response: /XCCAAAA[CR]

Mid Level Command:/X S 01001110 ? 00000001 ? 00000010 ? 00000011 ? P [CR]
Mid Level Response: /XCC0000[CR]

Low Level Command:/X dc dCcDCcdCcdCcDCcDCcDCcdCc DCAc
dCcdCcdCcdCcdCcdCcdCcDCc DCAcdCcdCcdCcdCcdCcdCcDCcdCc DCAc
dCcdCcdCcdCcdCcdCcdCcDCc DCAc dCD[CR]
Low Level Response: /XCC0000[CR]

Master read three bytes from slave address 0x4F. First two bytes are acknowledged
by master.

Command: /X S ~4f Rrr P [CR]
Response: /XCCA~xx~xx~xx[CR] ‘(xx = 00...FF)

Master transmit a Write WCR command to a Xicor X9241 at slave address 0x50.
WCR data is 0x00.

Command: /X S ~50 ~a0 ~00 P [CR]
Response: /XCCAAA[CR]

Master transmit a Write WCR command to a Xicor X9241 at slave address 0x50.
WCR data is 0x3f.

Command: /X S ~50 ~a0 ~3f P [CR]
Response: /XCCAAA[CR]

54

Issue a Read WCR command to a Xicor X9241 at slave address 0x50.

Command: /X S ~50 ~90 ~R P [CR]
Response: /XCCAA~xx[CR] ‘(xx = 00...FF)

Issue an Increment Wiper command to a Xicor X9241 at slave address 0x50.

Command: /X S ~50 ~20 1 P [CR]
Response: /XCCAA[CR]

Issue a Decrement Wiper command to a Xicor X9241 at slave address 0x50.

Command: /X S ~50 ~20 0 P [CR]
Response: /XCCAA[CR]

Display Tx bYte Count

Returns the number of bytes received by the slave device in the last master transmit
message, with an option to received the state of the last received Acknowledgment
bit.

Note: The byte count and last received acknowledgment bit state can be used for
SMBus Packet Error Control (PEC) error detection. See SMBus v1.1+
specifications for details.

Command: /(*)Y[CR] ‘Tx bYte Count (* = with last received Ack bit)
Response: /TBCn[CR] 'n =00000...32767
Response: /TBCn(A|N)[CR] 'n =00000...32767, A = ACK, N = NACK

55

Asynchronous Interface Events

Asynchronous Events are those i2cStick interface activities initiated by the i2cStick
I2C Host Adapter in response to activities on the I2C Bus.

Slave Transmit Request

This event is caused by the reception of an I2C Bus Slave Transmit message
directed at the current i2cStick’s own Slave address.

Prompt: /STR[CR] ‘Slave Transmit Request
Command: /Stext[CR] ‘Slave Transmit Text

The normal Host computer response is to send a Slave Transmit (/Stext[CR])
command.

Note: Upon receiving a Slave Transmit request from a Master Receiver device on
the I2C Bus, i2cStick outputs a Slave Transmit Request to its Host device, and
initiates an I2C Clock Stretch (SCL Low) until a Slave Transmit Text command is
received from the Host computer. While clock stretching, no other messages can be
transmitted on the I2C Bus.

Slave Receive Complete

This event is caused by the reception of an I2C Bus Slave Receive message directed
at the current i2cStick’s own Slave address.

The received text is a representation of the data bytes within the Slave Receive
message. The format of this data is controlled by the current setting of the Hex Only
Display Control.

Prompt: /SRCtext[CR] ‘Slave Receive Complete
Command: None Required

General Call Receive Complete

This event is caused by the reception of an I2C Bus Slave Receive message directed
at the I2C General Call Address (00), when i2cStick’s General Call recognition is
enabled.

56

The received text is a representation of the data bytes within the Slave Receive
message. The format of this data is controlled by the current setting of the Hex Only
Display Control.

Prompt: /GRCtext[CR] ‘General Call Receive Complete
Command: None Required

i2cStick Ready
Prompt: * ‘i2cStick Ready

Cause: i2cStick is ready for the next Host command.

Slave Not Acknowledging

Prompt: /SNA[CR] ‘Slave Not Acknowledging

Cause: There is no response (I2C Slave Address Acknowledgment) during a Master
Transmit or Receive operation from an I2C Slave device at the current Destination
I2C Address.

i2cStick Busy

Prompt: /I81[CR] ‘i2cStick Busy

Cause: The host computer attempted a Master operation while i2cStick was busy.
The host computer should wait for any previously issued command to complete,
process any pending slave events, and retry the last command.

I2C Bus Arbitration Loss

Prompt: /I83[CR] ‘I2C Arbitration Loss Detected

Cause: i2cStick lost I2C Bus Arbitration to another bus master device while Master
Transmitting or Master Receiving an I2C message. Host should process any active
slave events and repeat the last command.

I2C Bus Error Detected

Prompt: /I84[CR] ‘I2C Bus Error Detected

57

Cause: i2cStick has detected an error condition on the I2C Bus. The host computer
should retry the last command or issue an i2cStick Reset command.

I2C Bus Time-out Detected

Prompt: /I85[CR] ‘I2C Bus Time-out Detected

Cause: i2cStick issues this response when it detects a byte transfer delay greater
than the specified I2C Bus Time-oUt period. No corrective action is taken by the
i2cStick regarding I2C Bus activity. No host computer response is required, but this
event can be used to detect possible bus problems.

i2cStick Connection Closed

Prompt: /I88[CR] ‘i2cStick Connection is Closed.

Cause: The host computer is attempting to perform an I2C Bus message operation
while the i2cStick Connection is Closed. The host computer should issue an Open
I2C Connection command before attempting to perform I2C Bus message
operations.

Invalid Command Argument

Prompt: /I89[CR] ‘Invalid Command Argument Detected

Cause: This event normally indicates the value of a host command argument was
out of range. The host should reissue command with correct arguments.

Slave Transmit Request Not Active

Prompt: /I8A[CR] ‘Slave Transmit Request Not Active

Cause: This event indicates the host attempted to issue a Slave Transmit Text
command when no Slave Transmit Request was present.

Invalid i2cStick Command

Prompt: /I8F[CR] ‘Invalid i2cStick Command

Cause: This event normally indicates that an invalid command was issued by the

58

host. The host should reissue the correct command.

i2cStick Receive Buffer Overflow

Prompt: /I90[CR] ‘i2cStick Serial Receive Buffer Overflow

Cause: This event normally indicates that data sent to the i2cStick via the serial port
has been lost. Check the host computer’s Serial Port Flow Control (XON/XOFF, or
Hardware) to make sure it matches current i2cStick Flow Control. Also, check if the
host computer’s FIFO buffers in its 16550 UART are enabled. If so, reduce or
disable Transmit Data Buffering. On Windows-based host computers, see the
Device Manager, COM port, Advanced Settings. You may need to power down the
host computer for any FIFO change to take effect.

59

Example Code

The following examples are written in MS Visual Basic V3 for Windows using the
serial communications control (MSCOMM.VBX). It can be used as a guide in
implementing i2cStick interface programs in other programming languages and
operating environments.

Note: Sample code is also available online at: www.mcc-us.com

i2cStick Reset
Comm1.Output = Chr$(18) 'Ctrl/R
Comm1.Output = Chr$(18) 'Ctrl/R
Comm1.Output = Chr$(18) 'Ctrl/R

i2cStick Initialization
Comm1.Output = "/f0" 'Set i2cStick XON/XOFF Flow Control
Comm1.Output = Chr$(13)

Comm1.Output = "/i70" 'Set i2cStick’s Own Slave Address
Comm1.Output = Chr$(13)

Comm1.Output = "/d4e" 'Set Destination Slave Address
Comm1.Output = Chr$(13)

Comm1.Output = "/o" 'Open I2C Connection
Comm1.Output = Chr$(13)

Master Transmit Message
Comm1.Output = "/T~00~01" 'Send Master Tx Command
Comm1.Output = Chr$(13) 'Terminate Command

Master Receive Message
Comm1.Output = "/R10" 'Send Master Rx Command
Comm1.Output = Chr$(13) 'Terminate Command

60

Communication Event Processing
Static Sub Comm1_OnComm ()
Static LineBuf$

While Comm1.InBufferCount
Msg$ = Comm1.Input ' Get Comm input character
CharIn$ = Msg$

If Msg$ = Chr$(13) Then Msg$ = "" ' Remove CR
If Msg$ = Chr$(10) Then Msg$ = "" ' Remove LF
If Msg$ = "*" Then ' if i2cStick Ready

Msg$ = "****" ‘ Substitute Token
CharIn$ = Chr$(13) ‘ Terminate Line

End If
LineBuf$ = LineBuf$ + Msg$ 'Add new text to line buffer

If CharIn$ = Chr$(13) Then ' if Carriage Return detected
iPortResp$ = Left$(LineBuf$, 4) 'Isolate Response Code

' Test for i2cStick Synchronous Interface Events

If (StrComp(iPortResp$, "/OCC") = 0) Then
' Open Connection Complete Processing
TextBox.Text = "/OCC Open Connection Complete"

ElseIf (StrComp(iPortResp$, "/MTC") = 0) Then
' Master Transmit Complete Processing
TextBox.Text = "/MTC Master Tx Complete"

ElseIf (StrComp(iPortResp$, "/MRC") = 0) Then
' Master Rx Complete Processing
TextBox.Text = LineBuf$ 'Update Display

ElseIf (StrComp(iPortResp$, "/STC") = 0) Then
' Slave Tx Complete Processing
TextBox.Text = "/STC Slave Tx Complete"

ElseIf (StrComp(iPortResp$, "/CCC") = 0) Then
' Close Connection Complete Processing
TextBox.Text = "/CCC Close Connection Complete "

61

ElseIf (StrComp(iPortResp$, "/BC0") = 0) Then
' i2cStick Baud Change 0 {19.2K}
TextBox.Text = "i2cStick Baud Change 0 {19.2K} "

ElseIf (StrComp(iPortResp$, "/BC1") = 0) Then
' i2cStick Baud Change 1 {57.6K}
TextBox.Text = "i2cStick Baud Change 1 {57.6K} "

ElseIf (StrComp(iPortResp$, "/BC2") = 0) Then
' i2cStick Baud Change 2 {115.2K}
TextBox.Text = "i2cStick Baud Change 0 {115.2K} "

' Test for i2cStick Asynchronous Interface Events

ElseIf (StrComp(iPortResp$, "/SRC") = 0) Then
' Slave Rx Complete Processing
TextBox.Text = LineBuf$ 'Update Display

ElseIf (StrComp(iPortResp$, "/GRC") = 0) Then
' General Call Rx Complete Processing
TextBox.Text = LineBuf$ 'Update Display

ElseIf (StrComp(iPortResp$, "/STR") = 0) Then
' Slave Tx Request Processing
Comm1.Output = "/S~00~01" 'Send Slave Tx Msg
Comm1.Output = Chr$(13) 'Terminate Command
TextBox.Text = LineBuf$ 'Update Display

' Test for i2cStick Response Messages

ElseIf (StrComp(iPortResp$, "****") = 0) Then
TextBox.Text = "* i2cStick Ready" 'Update Display

ElseIf (StrComp(iPortResp$, "/SNA") = 0) Then
TextBox.Text = "/SNA Slave Not Acknowledging"

ElseIf (StrComp(iPortResp$, "/I81") = 0) Then
TextBox.Text = "/I81 i2cStick Busy" 'Update Display

ElseIf (StrComp(iPortResp$, "/I83") = 0) Then

62

TextBox.Text = "/I83 Arbitration Loss" 'Update Display

ElseIf (StrComp(iPortResp$, "/I84") = 0) Then
TextBox.Text = "/I84 I2C Bus Error Detected"

ElseIf (StrComp(iPortResp$, "/I85") = 0) Then
TextBox.Text = "/I85 I2C Bus Time-out Detected"

ElseIf (StrComp(iPortResp$, "/I88") = 0) Then
TextBox.Text = "/I88 i2cStick Connection Closed"

ElseIf (StrComp(iPortResp$, "/I89") = 0) Then
TextBox.Text = "/I89 Invalid Command Argument"

ElseIf (StrComp(iPortResp$, "/I8A") = 0) Then
TextBox.Text = "/I8A Slave Tx Request Not Active"

ElseIf (StrComp(iPortResp$, "/I8F") = 0) Then
TextBox.Text = "/I8F Invalid i2cStick Command"

ElseIf (StrComp(iPortResp$, "/I90 = 0) Then
TextBox.Text = "/I90 i2cStick Rx Buffer Overflow”

Else
TextBox.Text = LineBuf$ 'Other Update Display

End If
LineBuf$ = ""
End If

Wend
End Sub

63

i2cStick Revision Report

This section defines revisions and changes made to the i2cStick interface:

Revision: 1.00

1 Initial Release

i2cStick UG Update 03-APR-2012

• Correct I2C Bus Mini Clip lead cable included, Mini Interface cable available.
• Correct Appendix A Molex part number and cable length.
• Add I2C Bus Mini CAB (#I2CMCAB) cable.

Additional Information

For additional information on the I2C Bus, please refer to the following:

“What is I2C?”
www.mcc-us.com/I2CBusTechnicalOverview.pdf

“Frequently Asked Questions (FAQ)”
www.mcc-us.com/faq.htm

"The I2C and How to Use It"
www.mcc-us.com/i2chowto.htm

64

Appendix A - I2C Connector Information

I2C Bus Interface Connector and Plug Information

The i2cStick uses the following 1x5 2.54 mm (.100") pitch, 0.64 mm (.025") square
pin, header and plug assemblies for the I2C Bus interface.

I2C Header

Molex C-Grid® SL™ 70553 Header
Molex Part # 70553-0004

I2C Plug Housing

Molex C-Grid® SL™ 70066 Crimp Housing
Molex Part # 50-57-9405

Molex C-Grid® SL™ 70058 Crimp Terminal
Molex Part # 16-02-0102

The following I2C Cables are available from MCC

MCC Part # I2CMIC I2C Mini Interface Cable 0.6 m (2')
MCC Part # I2CMCL I2C Mini Clip Lead Cable 0.3 m (1')
MCC Part # I2CMCAB I2C Mini CAB Cable 0.6 m (2')

65

Information

FCC Statement

DECLARATION OF CONFORMITY WITH FCC RULES FOR ELECTROMAGNETIC
COMPATIBILITY
We, Micro Computer Control Corporation, of 83 Princeton Avenue #1D / PO Box 275,
Hopewell, New Jersey 08525 USA, declare under our sole responsibility that the product:

i2cStick (#MIIC-207)

to which this declaration relates:
Complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions;
(1) this device may not cause harmful interference, and (2) this device must accept any
interference received, including interference that may cause undesired operation.

Test Laboratory Information:

MET Laboratories, Inc.
Test Report Number: EMC29574-FCC
Test Report Date: November 4, 2010
Technical file held by: Micro Computer Control Corporation, 83 Princeton Avenue #1D / PO
Box 275, Hopewell, New Jersey 08525 USA, or its applicable authorized distributor or
representative.

CE Declaration of Conformity
We, Micro Computer Control Corporation, of 83 Princeton Avenue #1D / PO Box 275,
Hopewell, New Jersey 08525 USA, declare under our sole responsibility that the i2cStick
(#MIIC-207), to which this declaration relates, is in conformity with General Emissions
Standard EN55022 (CISPR22): 2006 Class A, and General Immunity Standard EN 55024: 1998
+ A1:2001 + A2: 2003.

Test Laboratory Information:

MET Laboratories, Inc.
Test Report Number: EMC29574-EURO
Test Report Date: November 4, 2010
Technical file held by: Micro Computer Control Corporation, 83 Princeton Avenue #1D / PO
Box 275, Hopewell, New Jersey 08525 USA, or its applicable authorized distributor or
representative.

