User's Guide

IP-101 I²C Bus Prototyping Card Revision 1

Micro Computer Control Corporation WWW.MCC-US.COM

I²C Prototyping Card

Model IP-101 Revision 1

User's Guide

Overview

I²C Bus is the Inter-Integrated Circuit serial bus developed by Philips Semiconductor for inter-IC communications in consumer electronics products such as stereos, televisions, and VCRs. This highly efficient and cost effective communications link is now being adopted by leading technology companies worldwide for chip, board, and system level communications.

An I²C Bus network can support up to 127 Master or Slave devices with a simple 2-wire interface. I²C devices can be as simple as RAM, EEPROM, or I/O devices, or have the full-blown processing power of an embedded microcontroller or microprocessor.

The MCC **IP-101 I**²**C** Prototyping Card provides an excellent platform for experimenting with the I²C Bus. It includes:

- •A Phillips PCF8574 8-bit Input/Output Expander for the I²C Bus.
- •A Philips PCF8570 256-8-bit Static RAM for the I²C Bus in a memory socket suitable for a variety of I²C RAM and EEPROM devices.
- I²C Bus and Power connectors.
- •A breadboard area suitable for various experimental or test circuits.

Packing Slip

The **IP-101** I²C Prototyping kit includes the following items:

- 1. The IP-101 I²C Prototyping Card.
- 2. I²C Interface Cable.
- 3. Configuration Instructions.

Interconnects

The IP-101 I²C Prototyping Card includes the following interconnections:

1. +5VDC Power

The IP-101 I²C Prototyping Card can be powered in one of two ways, from the I²C interface connector, or from the power jack.

If the unit is powered from the I²C interface connector (J1 or J2), the power control jumper (J5) must be set to MOD (the default Factory Setting). If the unit is powered from the power jack (J6), a +5VDC Wall Transformer (DigiKey Part# T309-ND) is required, and the power control jumper (J5) must be set to EXT.

2. I²C Interface Connectors

The IP-101 I²C Prototyping Card includes two (J1 and J2) four wire, positive locking, modular connectors (Molex Part#15-83-0064 Socket, #15-83-1564 Plug) for interfacing to an external I²C Bus. Lines provided include:

+5VDC

- 2. Data (SDA)
- 3. Ground
- 4.

MolexSEMCONN™ ACCESS.bus Receptacle Connector

An I²C Interface Cable (White=SCL, Red=+5VDC, Green=SDC, Black=Ground) is provided to connect to a external I²C Bus. Standard two connector four foot long interface cables are available. Contact MCC for other cable configurations.

3. iPack Stackable Connector

The stack connector (J1) provides access to IP-101 power and I2C Bus, and allows stacking of iPack compatable boards.

Configuration

All I²C slave devices have an address in the I²C address space. This address space includes all 8-bit even numbers (0x00...0xFE). Address Zero (0x00) is a special Broadcast Address, and is not supported by all devices. I²C slave device addresses can be:

Single Fixed Address

The I²C slave device address is set when the device is manufactured or programmed.

Selectable Address

The I²C slave device supports a limited range of addresses. These devices usually have one or more pins that allow the selection of a specific address within the supported range. The specific address can be set by connections on the printed circuit board hosting the device, or can be jumper selectable. Selectable addressing allows multiple identical devices to exist on the same I²C Bus at the same time, with each device having a different I²C slave address.

Programmable Address

An I²C slave devices could support the reprogramming of its address in response to system events. Commands to set the slave address can come across the I²C Bus, can originate with other device interfaces, or can be generated internally.

The IP-101 I²C Prototyping Card supports selectable addressing, and includes three onboard jumpers to control I/O Port and Memory Socket configuration. These jumpers include:

I/O Expander I²C Slave Address Configuration (JP1)

The Philips PCF8574 8-bit Input/Output Expander for the I²C Bus (U1) provides

8-bits of Input or Output at a selectable I^2C slave address. This device has three pins (p1=A0, p2=A1, p3=A2) that allows the selection of one of eight possible addresses, starting with the device base address 0x40. These three address select lines are controlled by positioning jumper blocks on header connector JP1 on the card.

JP1.	JP1.2	JP1.1	Device I ² C Slave Address
4			
OFF	OFF	OFF	0x4E (Factory Default Setting)
OFF	OFF	ON	0x4C
OFF	ON	OFF	0x4A
OFF	ON	ON	0x48
ON	OFF	OFF	0x46
ON	OFF	ON	0x44
ON	ON	OFF	0x42
ON	ON	ON	0x40

Memory Socket I²C Address Configuration (JP2)

The Memory Socket (U2) supports a variety of eight (8) pin DIP I²C RAM and EEPROM memory devices with selectable slave addresses. These memory devices typically have three pins (p1=A0, p2=A1, p3=A2) that allows the selection of one of eight possible addresses, starting with a device base address that is device dependent. (A typical example is the Philips PCF8570 256x8-bit Static RAM device with a base address of 0xA0.) These three address select lines are controlled by positioning jumper blocks on header connector JP2 on the card.

JP2.4	JP2.2	JP2. 1	Device I ² C Slave Address (for PCF8570 Static RAM)				
OFF	OFF	OFF	0xAE (Factory Default Setting)				
OFF	OFF	ON	0xAC				
OFF	ON	OFF	0xAA				
OFF	ON	ON	0xA8				
ON	OFF	OFF	0xA6				
ON	OFF	ON	0xA4				
ON	ON	OFF	0xA2				
ON	ON	ON	0xA0				

Memory Socket TEST Pin Configuration (J4)

The Memory Socket (U2) also supports TEST pin (p7) configuration. This pin is used in a variety of ways that is dependent on the specific memory device. (A typical example is the Philips PCF8570 256x8-bit Static RAM device where the TEST pin is used for Power Saving Mode control.) This pin is controlled by positioning the jumper block on header connector J4 on the card.

GND	VCC	Device I ² C Slave Address (for PCF8570 Static RAM)
OFF	OFF	Device Dependent
OFF	ON	Power Saving Mode On
ON	OFF	Power Saving Mode Off (Factory Default Setting)

Accessing I²C Bus Devices

All I²C slave devices have a message protocol that defines how to access the device. Bus protocols for IP-101 I²C Prototyping Card devices are as follows:

Philips PCF8574 8-bit Input/Output Expander

Each I/O pin on the PCF8574 can be used as an Input or Output.

To treat a pin as an output, set or clear the pin's bit position (P7=D7,...P0=D0) in the I²C message data byte and write the byte to the PCF8574.

To treat a pin as an input, set all input pin bit positions (P7=D7,...P0=D0) in the I²C message data byte and write the byte to the PCF8574. To read the input pin's logic level, read the entire byte from the PCF8574 and test the pin's bit position in the received I²C message data byte.

Start | Slave Address | 0 | Ack | Data | Ack | stoP Write I/O Expander Port (WRITE Data).

Start | Slave Address | 1 | A | Data | Nack | stoP Read I/O Expander Port (READ Data).

Philips PCF8570 256x8-bit Static RAM

The PCF8570 provides 256 bytes of static RAM. Like any RAM device, you can read or write any byte within the device.

Accessing a byte within an I²C memory device requires that you specify both the I²C device slave address and the address of the memory byte within the device. In the case of the PCF8570, the memory byte address is contained in the first message byte following the slave address.

The PCF8570 also supports continuous reading, where the memory byte address is auto-incremented after each read.

S | Slave Address | 0 | A | Memory Address | A | Data | A | ... | Data | A | P Set RAM Address and Write RAM byte(s) (WRITE Address, WRITE Data).

S | Slave Address | 0 | A | Memory Address

S | Slave Address | 1 | A | Data | A | ... | Data | N | P Set RAM Address and Read RAM byte(s) (WRITE Address, READ Data).

S	Slave Address	1	A	Data	A		Data	N	Ρ	
Read RAM byte(s) (READ Data).										

Additional Information

For additional information on the I²C Bus or specific I²C devices see the device manufacturer's data sheet or refer to the following:

Philips Semiconductors 811 East Arques Ave. Sunnyvale, CA 94088 Tel. (800)227-1817 "80C51-Based 8-Bit Microcontroller" Data Handbook.

Philips Semiconductors

"I2C Peripherals for Microcontrollers" Data Handbook.

TEL(609)466-1751 FAX (609)466-4116

For the latest product information, configuration availability, and technical tips visit our Web Site at:

http://www.mcc-us.com

June - 2000

PrototypingBoard.wpd

